Antibiotics pp 227-235 | Cite as

Reporter Gene-Based Screening for TPP Riboswitch Activators

  • Christina E. Lünse
  • Günter Mayer
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)


With the rise of multidrug resistant bacteria and a growing number of nosocomial infections, there has been an increased interest in finding new antibacterial drugs and drug targets. Riboswitches represent attractive new antibacterial drug targets, because they not only inherently recognize a specific metabolite or ion with their RNA aptamer domain, but also often regulate essential metabolic pathways. Here, we describe a reporter gene-based screen to identify compounds that activate the thiamine pyrophosphate (TPP) riboswitch in bacteria. This assay can be easily adapted for different riboswitch classes and thus has the potential to target many essential metabolic pathways and a broad spectrum of bacterial pathogens.

Key words

Translational fusion Miller assay Thiamine pyrophosphate lacZ reporter gene Antibiotics 



G.M. was supported by a grant from the German Research Foundation (MA3442/1-2). C.E.L. was supported by the German Research Foundation grant LU1889-1 and NIH P01 grant GM022778 awarded to Professor Ronald R. Breaker, HHMI investigator, Yale University.


  1. 1.
    Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43(6):867–879. doi: 10.1016/j.molcel.2011.08.024 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24(12):1558–1564. doi: 10.1038/nbt1268 CrossRefPubMedGoogle Scholar
  3. 3.
    Lünse CE, Schüller A, Mayer G (2014) The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol 304(1):79–92. doi: 10.1016/j.ijmm.2013.09.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR (2007) Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 3(1):44–49. doi: 10.1038/nchembio842 CrossRefPubMedGoogle Scholar
  5. 5.
    Lünse CE, Schmidt MS, Wittmann V, Mayer G (2011) Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 6(7):675–678. doi: 10.1021/cb200016d CrossRefPubMedGoogle Scholar
  6. 6.
    Lünse CE, Scott FJ, Suckling CJ, Mayer G (2014) Novel TPP-riboswitch activators bypass metabolic enzyme dependency. Front Chem 2:53. doi: 10.3389/fchem.2014.00053 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Blount KF, Megyola C, Plummer M, Osterman D, O'Connell T, Aristoff P, Quinn C, Chrusciel RA, Poel TJ, Schostarez HJ, Stewart CA, Walker DP, Wuts PG, Breaker RR (2015) Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 59(9):5736–5746. doi: 10.1128/AAC.01282-15 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim JN, Blount KF, Puskarz I, Lim J, Link KH, Breaker RR (2009) Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 4(11):915–927. doi: 10.1021/cb900146k CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mulhbacher J, Brouillette E, Allard M, Fortier LC, Malouin F, Lafontaine DA (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6(4), e1000865. doi: 10.1371/journal.ppat.1000865 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526(7575):672–677. doi: 10.1038/nature15542 CrossRefPubMedGoogle Scholar
  11. 11.
    Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419(6910):952–956. doi: 10.1038/nature01145 CrossRefPubMedGoogle Scholar
  12. 12.
    Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, NYGoogle Scholar
  13. 13.
    Nelson JW, Plummer MS, Blount KF, Ames TD, Breaker RR (2015) Small molecule fluoride toxicity agonists. Chem Biol 22(4):527–534. doi: 10.1016/j.chembiol.2015.03.016 CrossRefPubMedGoogle Scholar
  14. 14.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi: 10.1038/msb4100050 PubMedGoogle Scholar
  15. 15.
    Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53(1):85–96CrossRefPubMedGoogle Scholar
  16. 16.
    Mayer G, Raddatz MS, Grunwald JD, Famulok M (2007) RNA ligands that distinguish metabolite-induced conformations in the TPP riboswitch. Angew Chem Int Ed Engl 46(4):557–560. doi: 10.1002/anie.200603166 CrossRefPubMedGoogle Scholar
  17. 17.
    Tang X, Nakata Y, Li HO, Zhang M, Gao H, Fujita A, Sakatsume O, Ohta T, Yokoyama K (1994) The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res 22(14):2857–2858CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rentmeister A, Mayer G, Kuhn N, Famulok M (2007) Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 35(11):3713–3722. doi: 10.1093/nar/gkm300 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Life and Medical Sciences InstituteUniversity of BonnBonnGermany
  2. 2.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA

Personalised recommendations