Antibiotics pp 175-200 | Cite as

In Vitro Assays to Identify Antibiotics Targeting DNA Metabolism

  • Allan H. Pang
  • Sylvie Garneau-Tsodikova
  • Oleg V. Tsodikov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)

Abstract

DNA metabolism embodies a number of biochemical pathways, which include targets of clinically used antibiotics as well as those that are only being explored as potential targets for inhibitory compounds. We give an overview of representative cell-based and enzymatic assays suitable for high-throughput-driven search for novel DNA metabolism inhibitors of established and novel DNA metabolism targets in bacteria. The protocol for a colorimetric coupled primase-inorganic pyrophosphatase assay developed by our group is described in detail.

Key words

Inhibitor discovery High-throughput assay DNA replication DNA recombination Resistance 

References

  1. 1.
    Fan J, de Jonge BL, MacCormack K, Sriram S, McLaughlin RE, Plant H, Preston M, Fleming PR, Albert R, Foulk M, Mills SD (2014) A novel high-throughput cell-based assay aimed at identifying inhibitors of DNA metabolism in bacteria. Antimicrob Agents Chemother 58(12):7264–7272.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Craig NL, Roberts JW (1981) Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. J Biol Chem 256(15):8039–8044PubMedGoogle Scholar
  3. 3.
    Brent R, Ptashne M (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A 78(7):4204–4208CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang JD, Sanders GM, Grossman AD (2007) Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128(5):865–875.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moir DT, Ming D, Opperman T, Schweizer HP, Bowlin TL (2007) A high-throughput, homogeneous, bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents. J Biomol Screen 12(6):855–864.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brazas MD, Hancock RE (2005) Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49(8):3222–3227CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hirota Y, Ryter A, Jacob F (1968) Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33:677–693CrossRefPubMedGoogle Scholar
  8. 8.
    Kellenberger-Gujer G, Podhajska AJ, Caro L (1978) A cold sensitive dnaA mutant of E. coli which overinitiates chromosome replication at low temperature. Mol Gen Genet 162(1):9–16CrossRefPubMedGoogle Scholar
  9. 9.
    Fossum S, De Pascale G, Weigel C, Messer W, Donadio S, Skarstad K (2008) A robust screen for novel antibiotics: specific knockout of the initiator of bacterial DNA replication. FEMS Microbiol Lett 281(2):210–214.CrossRefPubMedGoogle Scholar
  10. 10.
    Kogoma T, von Meyenburg K (1983) The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. EMBO J 2(3):463–468PubMedPubMedCentralGoogle Scholar
  11. 11.
    de Massy B, Fayet O, Kogoma T (1984) Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol 178(2):227–236CrossRefPubMedGoogle Scholar
  12. 12.
    Cromie GA (2009) Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes. J Bacteriol 191(16):5076–5084.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amundsen SK, Spicer T, Karabulut AC, Londono LM, Eberhart C, Fernandez Vega V, Bannister TD, Hodder P, Smith GR (2012) Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes. ACS Chem Biol 7(5):879–891.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100(1):95–97CrossRefPubMedGoogle Scholar
  15. 15.
    Van Veldhoven PP, Mannaerts GP (1987) Inorganic and organic phosphate measurements in the nanomolar range. Anal Biochem 161(1):45–48CrossRefPubMedGoogle Scholar
  16. 16.
    de Groot H, Noll T (1985) Enzymic determination of inorganic phosphates, organic phosphates and phosphate-liberating enzymes by use of nucleoside phosphorylase-xanthine oxidase (dehydrogenase)-coupled reactions. Biochem J 230(1):255–260CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Humnabadkar V, Madhavapeddi P, Basavarajappa H, Sheikh MG, Rane R, Basu R, Verma P, Sundaram A, Mukherjee K, de Sousa SM (2015) Assays, surrogates, and alternative technologies for a TB lead identification program targeting DNA gyrase ATPase. J Biomol Screen 20(2):265–274.CrossRefPubMedGoogle Scholar
  18. 18.
    Biswas T, Resto-Roldan E, Sawyer SK, Artsimovitch I, Tsodikov OV (2013) A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG. Nucleic Acids Res 41(4), e56.CrossRefPubMedGoogle Scholar
  19. 19.
    Biswas T, Green KD, Garneau-Tsodikova S, Tsodikov OV (2013) Discovery of inhibitors of Bacillus anthracis primase DnaG. Biochemistry 52(39):6905–6910.CrossRefPubMedGoogle Scholar
  20. 20.
    McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PC (2013) Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol 168(1):172–188.CrossRefPubMedGoogle Scholar
  21. 21.
    Tholander F, Sjoberg BM (2012) Discovery of antimicrobial ribonucleotide reductase inhibitors by screening in microwell format. Proc Natl Acad Sci U S A 109(25):9798–9803.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jude KM, Hartland A, Berger JM (2013) Real-time detection of DNA topological changes with a fluorescently labeled cruciform. Nucleic Acids Res 41(13), e133.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Taylor JA, Mitchenall LA, Rejzek M, Field RA, Maxwell A (2013) Application of a novel microtitre plate-based assay for the discovery of new inhibitors of DNA gyrase and DNA topoisomerase VI. PLoS One 8(2), e58010.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Buhler C, Gadelle D, Forterre P, Wang JC, Bergerat A (1998) Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res 26(22):5157–5162CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Finlay GJ, Atwell GJ, Baguley BC (1999) Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drug-protein interactions. Oncol Res 11(6):249–254PubMedGoogle Scholar
  26. 26.
    Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK (1992) Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese hamster fibrosarcoma cells. Proc Natl Acad Sci U S A 89(7):3025–3029CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chauhan PM, Srivastava SK (2001) Present trends and future strategy in chemotherapy of malaria. Curr Med Chem 8(13):1535–1542CrossRefPubMedGoogle Scholar
  28. 28.
    Cheng B, Cao S, Vasquez V, Annamalai T, Tamayo-Castillo G, Clardy J, Tse-Dinh YC (2013) Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS One 8(4), e60770.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mills SD, Eakin AE, Buurman ET, Newman JV, Gao N, Huynh H, Johnson KD, Lahiri S, Shapiro AB, Walkup GK, Yang W, Stokes SS (2011) Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Antimicrob Agents Chemother 55(3):1088–1096.CrossRefPubMedGoogle Scholar
  30. 30.
    Shapiro AB, Eakin AE, Walkup GK, Rivin O (2011) A high-throughput fluorescence resonance energy transfer-based assay for DNA ligase. J Biomol Screen 16(5):486–493.CrossRefPubMedGoogle Scholar
  31. 31.
    Glaser BT, Malerich JP, Duellman SJ, Fong J, Hutson C, Fine RM, Keblansky B, Tang MJ, Madrid PB (2011) A high-throughput fluorescence polarization assay for inhibitors of gyrase B. J Biomol Screen 16(2):230–238.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Peterson EJ, Janzen WP, Kireev D, Singleton SF (2012) High-throughput screening for RecA inhibitors using a transcreener adenosine 5′-O-diphosphate assay. Assay Drug Dev Technol 10(3):260–268.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee AM, Wigle TJ, Singleton SF (2007) A complementary pair of rapid molecular screening assays for RecA activities. Anal Biochem 367(2):247–258.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Gajadeera C, Willby MJ, Green KD, Shaul P, Fridman M, Garneau-Tsodikova S, Posey JE, Tsodikov OV (2015) Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. J Antibiot (Tokyo) 68(3):153–157.CrossRefGoogle Scholar
  36. 36.
    Biswas T, Tsodikov OV (2008) Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. FEBS J 275(12):3064–3071.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Allan H. Pang
    • 1
  • Sylvie Garneau-Tsodikova
    • 1
  • Oleg V. Tsodikov
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations