Antibiotics pp 159-174 | Cite as

Measurement of Cell Membrane Fluidity by Laurdan GP: Fluorescence Spectroscopy and Microscopy

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)

Abstract

Membrane fluidity is a critical parameter of cellular membranes which cells continuously strive to maintain within a viable range. An interference with the correct membrane fluidity state can strongly inhibit cell function. Triggered changes in membrane fluidity have been postulated to contribute to the mechanism of action of membrane targeting antimicrobials, but the corresponding analyses have been hampered by the absence of readily available analytical tools. Here, we provide detailed protocols that allow straightforward measurement of antibiotic compound-triggered changes in membrane fluidity both in vivo and in vitro.

Key words

Membrane fluidity Membrane viscosity Lipid domains Lipid packing Fatty acid disorder Laurdan Lipid adaptation Membrane targeting antimicrobials 

Notes

Acknowledgment

This work was supported by Wellcome Trust Institutional Strategic Support Funds (ISSF), and by Newcastle University.

References

  1. 1.
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233CrossRefPubMedGoogle Scholar
  3. 3.
    Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788:289–294CrossRefPubMedGoogle Scholar
  4. 4.
    Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tyler KM, Wheeler G (2011) Widefield microscopy for live imaging of lipid domains and membrane dynamics. Biochim Biophys Acta 1808:634–641CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Strahl H, Bürmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 5:3442CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bach JN, Bramkamp M (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217CrossRefPubMedGoogle Scholar
  9. 9.
    Chico DE, Given RL, Miller BT (2003) Binding of cationic cell-permeable peptides to plastic and glass. Peptides 24:3–9CrossRefPubMedGoogle Scholar
  10. 10.
    New RRC (1990) Liposomes: a practical approach. IRL Press, OxfordGoogle Scholar
  11. 11.
    Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236PubMedPubMedCentralGoogle Scholar
  12. 12.
    Strahl H, Hamoen LW (2010) Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A 107:12281–12286CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kathi Scheinpflug
    • 1
  • Oxana Krylova
    • 1
  • Henrik Strahl
    • 2
  1. 1.Department of Chemical BiologyLeibniz-Institut für Molekulare Pharmakologie (FMP)BerlinGermany
  2. 2.Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations