Skip to main content

Purification of Yeast Native Reagents for the Analysis of Chromatin Function-I: Nucleosomes for Reconstitution and Manipulation of Histone Marks

  • Protocol
  • First Online:
Histones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1528))

Abstract

Purification of native biological material provides powerful tools for the functional analysis of enzymes and proteins in chromatin. In particular, histone proteins harbor numerous post-translational modifications, which may differ between species, tissues, and growth conditions and are lacking on recombinant histones. Moreover, the physiological substrate of most enzymes that modify histones is chromatin and the majority of these enzymes need to be part of a multiprotein assembly to be able to act on chromatin. For the yeast Saccharomyces cerevisiae different chromatin purification protocols are available but often result in poor yields or rely on genetic manipulation. We present a simple purification protocol that can yield up to 150 μg of pure native chromatin per liter of yeast culture. The purified material can be obtained from mutant cells lacking specific histone modifications and can be used in in vitro chromatin assembly for biochemical studies. Based on the extremely high degree of conservation throughout eukaryotes, this modifiable native chromatin can be used in studies with factors from other organisms including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalonde ME, Cheng X, Cote J (2014) Histone target selection within chromatin: an exemplary case of teamwork. Genes Dev 28:1029–1041. doi:10.1101/gad.236331.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang H, Sabari BR, Garcia BA et al (2014) SnapShot: histone modifications. Cell 159:458–458.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  4. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266. doi:10.1038/nsmb.2470

    Article  CAS  PubMed  Google Scholar 

  5. Lacoste N, Utley RT, Hunter JM et al (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277:30421–30424. doi:10.1074/jbc.C200366200

    Article  CAS  PubMed  Google Scholar 

  6. Strahl BD, Grant PA, Briggs SD et al (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S et al (2004) Expression and purification of recombinant human histones. Methods 33:3–11. doi:10.1016/j.ymeth.2003.10.024

    Article  CAS  PubMed  Google Scholar 

  8. Dyer PN, Edayathumangalam RS, White CL et al (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

  9. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    Article  CAS  PubMed  Google Scholar 

  10. Musselman CA, Lalonde ME, Cote J et al (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227. doi:10.1038/nsmb.2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499. doi:10.1146/annurev-biochem-061809-175347

    Article  CAS  PubMed  Google Scholar 

  12. Yun M, Wu J, Workman JL et al (2011) Readers of histone modifications. Cell Res 21:564–578. doi:10.1038/cr.2011.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He S, Bauman D, Davis JS et al (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci 100:12033–12038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon MD, Shokat KM (2012) A method to site-specifically incorporate methyl-lysine analogues into recombinant proteins. Methods Enzymol 512:57–69. doi:10.1016/B978-0-12-391940-3.00003-2

    Article  CAS  PubMed  Google Scholar 

  15. Neumann H, Hancock SM, Buning R et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163. doi:10.1016/j.molcel.2009.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shogren-Knaak MA, Peterson CL (2004) Creating designer histones by native chemical ligation. Methods Enzymol 375:62–76

    Article  CAS  PubMed  Google Scholar 

  17. Becker PB, Tsukiyama T, Wu C (1994) Chromatin assembly extracts from Drosophila embryos. Methods Cell Biol 44:207–223

    Article  CAS  PubMed  Google Scholar 

  18. Wippo CJ, Korber P (2012) In vitro reconstitution of in vivo-like nucleosome positioning on yeast DNA. Methods Mol Biol 833:271–287. doi:10.1007/978-1-61779-477-3_17

    Article  CAS  PubMed  Google Scholar 

  19. Côté J, Utley RT, Workman JL (1995) Basic analysis of transcription factor binding to nucleosomes. Methods Mol Genet 6:108–128

    Article  Google Scholar 

  20. Utley RT, Owen-Hughes TA, Juan LJ et al (1996) In vitro analysis of transcription factor binding to nucleosomes and nucleosome disruption/displacement. Methods Enzymol 274:276–291

    Article  CAS  PubMed  Google Scholar 

  21. White CL, Suto RK, Luger K (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J 20:5207–5218. doi:10.1093/emboj/20.18.5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891. doi:10.1038/nsb996

    Article  CAS  PubMed  Google Scholar 

  23. Allard S, Utley RT, Savard J et al (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18:5108–5119. doi:10.1093/emboj/18.18.5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Altaf M, Auger A, Monnet-Saksouk J et al (2010) NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A. Z by the SWR1 complex. J Biol Chem 285:15966–15977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim Y, Shen CH, Clark DJ (2004) Purification and nucleosome mapping analysis of native yeast plasmid chromatin. Methods 33:59–67. doi:10.1016/j.ymeth.2003.10.021

    Article  CAS  PubMed  Google Scholar 

  26. Unnikrishnan A, Akiyoshi B, Biggins S et al (2012) An efficient purification system for native minichromosome from Saccharomyces cerevisiae. Methods Mol Biol 833:115–123. doi:10.1007/978-1-61779-477-3_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorch Y, Kornberg RD (1994) Isolation of the yeast histone octamer. Proc Natl Acad Sci U S A 91:11032–11034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griesenbeck J, Boeger H, Strattan JS et al (2003) Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol Cell Biol 23:9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saksouk N, Avvakumov N, Champagne KS et al (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33:257–265. doi:10.1016/j.molcel.2009.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altaf M, Utley RT, Lacoste N et al (2007) Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28:1002–1014, doi: S1097-2765(07)00827-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Utley RT, Lacoste N, Jobin-Robitaille O et al (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25:8179–8190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Rhea Utley for significant corrections to this manuscript. This work was supported by a grant from the Canadian Institutes of Health Research (CIHR; MOP-14308). N.L. was supported by a Canadian Government Foreign Affairs/International Trade studentship. J.C. holds the Canada Research Chair in Chromatin Biology and Molecular Epigenetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Côté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lacoste, N., Bhat, W., Côté, J. (2017). Purification of Yeast Native Reagents for the Analysis of Chromatin Function-I: Nucleosomes for Reconstitution and Manipulation of Histone Marks. In: Guillemette, B., Gaudreau, L. (eds) Histones. Methods in Molecular Biology, vol 1528. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6630-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6630-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6628-8

  • Online ISBN: 978-1-4939-6630-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics