Skip to main content

Inferring Genome-Wide Interaction Networks

  • Protocol
  • First Online:
Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1526))

Abstract

The inference of gene regulatory networks is an important process that contributes to a better understanding of biological and biomedical problems. These networks aim to capture the causal molecular interactions of biological processes and provide valuable information about normal cell physiology. In this book chapter, we introduce GNI methods, namely C3NET, RN, ARACNE, CLR, and MRNET and describe their components and working mechanisms. We present a comparison of the performance of these algorithms using the results of our previously published studies. According to the study results, which were obtained from simulated as well as expression data sets, the inference algorithm C3NET provides consistently better results than the other widely used methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emmert-Streib F, Glazko GV, Altay G, de Matos Simoes R (2012) Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front Genet 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Emmert-Streib F, Dehmer M (2010) Medical biostatistics for complex diseases. Wiley-Blackwell, Weinheim

    Book  Google Scholar 

  3. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  4. Schadt E (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223

    Article  CAS  PubMed  Google Scholar 

  5. Kurt Z, Aydin N, Altay G (2014) A comprehensive comparison of association estimators for gene network inference algorithms. Bioinformatics btu182v2–btu182

    Google Scholar 

  6. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103

    Article  CAS  PubMed  Google Scholar 

  7. Klipp E, Herwig R, Kowald H, Wierling C, Lehrach H (2005) Systems biology in practice: concepts, implementation, and application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  8. Emmert-Streib F, Dehmer M (2009) Information processing in the transcriptional regulatory network of yeast: functional robustness. BMC Syst Biol 3:35

    Article  PubMed  PubMed Central  Google Scholar 

  9. Emmert-Streib F, Dehmer M (2009) Predicting cell cycle regulated genes by causal interactions. PLoS One 4(8):e6633

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kurt Z, Aydin N, Altay G (2014) Comprehensive review of association estimators for the inference of gene networks. Turk J Electr Eng Comput Sci. doi:10.3906/elk-1312-90

  11. Gallager R (1968) Information theory and reliable communication. Wiley, New York

    Google Scholar 

  12. Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign

    Google Scholar 

  13. Butte A, Tamayo P, Slonim D, Golub T, Kohane I (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A 97(22):12182–12186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer P, Kontos K, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EUROSIP J Bioinform Syst Biol 79879

    Google Scholar 

  15. Li W (1990) Mutual information functions versus correlation functions. J Stat Phys 60(5–6):823–837

    Article  Google Scholar 

  16. Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(2):231–240

    Article  Google Scholar 

  17. Altay G, Asim M, Markowetz F, Neal DE (2011) Differential C3NET reveals disease networks of direct physical interactions. BMC Bioinformatics 12:296

    Article  PubMed  PubMed Central  Google Scholar 

  18. Butte A, Kohane I (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:415–426

    Google Scholar 

  19. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7:7

    Article  Google Scholar 

  20. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:8

    Article  Google Scholar 

  21. Meyer PE, Kontos K, Latiffe F, Bontempi G (2007). Information-theoretic inference of large transcriptional regulatory networks. EUROSIPJ Bioinform Syst Biol, Article ID 79879

    Google Scholar 

  22. Altay G, Emmert-Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 5:132

    Article  Google Scholar 

  23. Altay G, Emmert-Streib F (2010) Structural influence of gene networks on their inference: analysis of C3NET. Biol Direct 6:31

    Article  Google Scholar 

  24. Cover T, Thomas J (1991) Information theory. John Wiley & Sons, New York

    Google Scholar 

  25. Csardi G, Nepusz T (2008) igraph-package. http://cneurocvs.rmki.kfki.hu/igraph/doc/R/aaa-igraph-package.html

  26. Fruchterman TMJ, Reingold EM (1991) Graph Drawing by Force-Directed Placement. Softw Pract Exp 21(11):1129–1164

    Article  Google Scholar 

  27. Meyer PE, Lafitte F, Bontempi G (2008) minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461

    Article  PubMed  PubMed Central  Google Scholar 

  28. Altay G, Altay N, Neal D (2013) Global assessment of network inference algorithms based on available literature of gene/protein interactions. Turk J Biol 37:547–555

    Article  Google Scholar 

  29. Emmert-Streib F, Altay G (2010) Local network-based measures to assess the inferability of different regulatory networks. IET Syst Biol 4(4):277–288

    Article  CAS  PubMed  Google Scholar 

  30. Altay G, Emmert-Streib F (2010) Revealing differences in gene network inference algorithms on the network-level by ensemble methods. Bioinformatics 26(14):1738–1744

    Article  CAS  PubMed  Google Scholar 

  31. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulatory network of Escherichia coli. Nat Genet 31:64–68

    Article  CAS  PubMed  Google Scholar 

  32. Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP (2004) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32:6643–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63

    Article  CAS  PubMed  Google Scholar 

  34. Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, De Moor B, Marchal K (2006) SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 7:43

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fersht A (1985) Enzyme structure and mechanism. W.H. Freeman and Company, New York

    Google Scholar 

  36. Hofmeyr J, Cornish-Bowden A (1997) The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comput Appl Biosci 13:377–385

    CAS  PubMed  Google Scholar 

  37. Mendes P, Sha W, Ye K (2003) Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19:122–129

    Article  Google Scholar 

  38. Altay G (2012) Empirically determining the sample size for large-scale gene network inference algorithms. IET Syst Biol 6(2):35–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökmen Altay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Altay, G., Mendi, O. (2017). Inferring Genome-Wide Interaction Networks. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1526. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6613-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6613-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6611-0

  • Online ISBN: 978-1-4939-6613-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics