Bioinformatics pp 257-270 | Cite as

Studying Antibody Repertoires with Next-Generation Sequencing

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1526)

Abstract

Next-generation sequencing is making it possible to study the antibody repertoire of an organism in unprecedented detail, and, by so doing, to characterize its behavior in the response to infection and in pathological conditions such as autoimmunity and cancer. The polymorphic nature of the repertoire poses unique challenges that rule out the use of many commonly used NGS methods and require tradeoffs to be made when considering experimental design.

We outline the main contexts in which antibody repertoire analysis has been used, and summarize the key tools that are available. The humoral immune response to vaccination has been a particular focus of repertoire analyses, and we review the key conclusions and methods used in these studies.

Key words

Antibodies Antibodyome Repertoire analysis Rep-Seq Next generation sequencing 

References

  1. 1.
    Sallusto F, Lanzavecchia A, Araki K, Ahmed R (2010) From vaccines to memory and back. Immunity 33:451–463CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lollini P-L, Nicoletti G, Landuzzi L et al (2011) Vaccines and other immunological approaches for cancer immunoprevention. Curr Drug Targets 12:1957–1973CrossRefPubMedGoogle Scholar
  3. 3.
    Lefranc M-P, Lefranc G (2001) The immunoglobulin FactsBook, 1st edn. Academic, San DiegoGoogle Scholar
  4. 4.
    Cheung WC, Beausoleil SA, Zhang X et al (2012) A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat Biotechnol 30:447–452CrossRefPubMedGoogle Scholar
  5. 5.
    Murphy KM (2012) Janeway’s immunobiology, 8th edn. Garland Science, UKGoogle Scholar
  6. 6.
    Collis AVJ, Brouwer AP, Martin ACR (2003) Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol 325:337–354CrossRefPubMedGoogle Scholar
  7. 7.
    Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schatz DG (2004) V(D)J recombination. Immunol Rev 200:5–11CrossRefPubMedGoogle Scholar
  9. 9.
    Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11:251–263CrossRefPubMedGoogle Scholar
  10. 10.
    Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758CrossRefPubMedGoogle Scholar
  11. 11.
    Poulsen TR, Jensen A, Haurum JS, Andersen PS (2011) Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans. J Immunol 187:4229–4235CrossRefPubMedGoogle Scholar
  12. 12.
    Stavnezer J, Guikema JEJ, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Radbruch A, Muehlinghaus G, Luger EO et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6:741–750CrossRefPubMedGoogle Scholar
  14. 14.
    Schittek B, Rajewsky K (1990) Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346:749–751CrossRefPubMedGoogle Scholar
  15. 15.
    Glanville J, Zhai W, Berka J et al (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Trepel F (1974) Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr 52:511–15Google Scholar
  17. 17.
    Fischer N (2011) Sequencing antibody repertoires. MAbs 3:17–20CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Georgiou G, Ippolito GC, Beausang J et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bashford-Rogers R, Palser AL, Idris SF et al (2014) Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol 15:29CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vollmers C, Sit RV, Weinstein JA et al (2013) Genetic measurement of memory B-cell recall using antibody repertoire sequencing. Proc Natl Acad Sci U S A 110:13463–13468CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schmitt MW, Kennedy SR, Salk JJ et al (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 109:14508–14513CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shugay M, Britanova OV, Merzlyak EM et al (2014) Towards error-free profiling of immune repertoires. Nat Methods 11:653–655CrossRefPubMedGoogle Scholar
  23. 23.
    Vander Heiden JA, Yaari G, Uduman M et al (2014) pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30:1930–1932CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Safonova Y, Bonissone S, Kurpilyansky E et al (2015) IgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis. Bioinformatics 31:i53–i61CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Meijer P-J, Andersen PS, Haahr Hansen M et al (2006) Isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J Mol Biol 358:764–772CrossRefPubMedGoogle Scholar
  26. 26.
    DeKosky BJ, Ippolito GC, Deschner RP et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 31:166–169CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Turchaninova MA, Britanova OV, Bolotin DA et al (2013) Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol 43:2507–2515CrossRefPubMedGoogle Scholar
  28. 28.
    Laserson U, Vigneault F, Gadala-Maria D et al (2014) High-resolution antibody dynamics of vaccine-induced immune responses. Proc Natl Acad Sci U S A 111:4928–4933CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lefranc M-P, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77CrossRefPubMedGoogle Scholar
  30. 30.
    Knight KL (1992) Restricted VH gene usage and generation of antibody diversity in rabbit. Annu Rev Immunol 10:593–616CrossRefPubMedGoogle Scholar
  31. 31.
    Darlow JM, Stott DI (2006) Gene conversion in human rearranged immunoglobulin genes. Immunogenetics 58:511–522CrossRefPubMedGoogle Scholar
  32. 32.
    Duvvuri B, Wu GE (2012) Gene conversion-like events in the diversification of human rearranged IGHV3-23*01 gene sequences. Front Immunol 3:158CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Larimore K, McCormick MW, Robins HS, Greenberg PD (2012) Shaping of human germline IgH repertoires revealed by deep sequencing. J Immunol 189:3221–3230CrossRefPubMedGoogle Scholar
  34. 34.
    Yousfi Monod M, Giudicelli V, Chaume D, Lefranc M-P (2004) IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioinformatics 20(Suppl 1):i379–i385CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang N, Weinstein JA, Penland L et al (2011) Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc Natl Acad Sci U S A 108:5348–5353CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Warren RL, Freeman JD, Zeng T et al (2011) Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 21:790–797CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Angelo SD, Glanville J, Ferrara F et al (2014) The antibody mining toolbox, an open source tool for the rapid analysis of antibody repertoires. MAbs 6:160–172CrossRefPubMedGoogle Scholar
  38. 38.
    Alamyar E, Duroux P, Lefranc M-P, Giudicelli V (2012) IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol Biol 882:569–604CrossRefPubMedGoogle Scholar
  39. 39.
    Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41:W34–W40CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Frost SDW, Murrell B, Hossain ASMM et al (2015) Assigning and visualizing germline genes in antibody repertoires. Philos Trans R Soc Lond B Biol Sci 370:20140240CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefGoogle Scholar
  42. 42.
    Gaëta BA, Malming HR, Jackson KJL et al (2007) iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 23:1580–1587CrossRefPubMedGoogle Scholar
  43. 43.
    Wang X, Wu D, Zheng S et al (2008) Ab-origin: an enhanced tool to identify the sourcing gene segments in germline for rearranged antibodies. BMC Bioinformatics 9(Suppl 12):S20CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Souto-Carneiro MM, Longo NS, Russ DE et al (2004) Characterization of the human Ig heavy chain antigen binding complementarity determining region 3 using a newly developed software algorithm, JOINSOLVER. J Immunol 172:6790–6802CrossRefPubMedGoogle Scholar
  45. 45.
    Munshaw S, Kepler TB (2010) SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements. Bioinformatics 26:867–872CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ohm-Laursen L, Nielsen M, Larsen SR, Barington T (2006) No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VH replacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements. Immunology 119:265–277CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Giraud M, Salson M, Duez M et al (2014) Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing. BMC Genomics 15:409CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kepler TB (2013) Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Res 2:103PubMedPubMedCentralGoogle Scholar
  49. 49.
    Thomas N, Heather J, Ndifon W et al (2013) Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29:542–550CrossRefPubMedGoogle Scholar
  50. 50.
    Bolotin DA, Shugay M, Mamedov IZ et al (2013) MiTCR: software for T-cell receptor sequencing data analysis. Nat Methods 10:813–814CrossRefPubMedGoogle Scholar
  51. 51.
    Hershberg U, Prak ETL (2015) The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos Trans R Soc B 370:20140239CrossRefGoogle Scholar
  52. 52.
    Wine Y, Boutz DR, Lavinder JJ et al (2013) Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc Natl Acad Sci U S A 110:2993–2998CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wu Y-C, Kipling D, Dunn-Walters DK (2012) Age-related changes in human peripheral blood IGH repertoire following vaccination. Front Immunol 3:193CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rogosch T, Kerzel S, Hoi KH et al (2012) Immunoglobulin analysis tool: a novel tool for the analysis of human and mouse heavy and light chain transcripts. Front Immunol 3:176CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hershberg U, Uduman M, Shlomchik MJ, Kleinstein SH (2008) Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol 20:683–694CrossRefPubMedGoogle Scholar
  56. 56.
    Uduman M, Yaari G, Hershberg U et al (2011) Detecting selection in immunoglobulin sequences. Nucleic Acids Res 39:W499–W504CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yaari G, Uduman M, Kleinstein SH (2012) Quantifying selection in high-throughput Immunoglobulin sequencing data sets. Nucleic Acids Res 40:e134CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    West AP Jr, Scharf L, Scheid JF et al (2014) Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 156:633–648CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Frölich D, Giesecke C, Mei HE et al (2010) Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J Immunol 185:3103–3110CrossRefPubMedGoogle Scholar
  60. 60.
    Wrammert J, Smith K, Miller J et al (2008) Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–671CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jiang N, He J, Weinstein JA et al (2013) Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med 5:171ra19CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bashford-Rogers R, Palser AL, Huntly BJ et al (2013) Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 23:1874–1884CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lavinder JJ, Wine Y, Giesecke C et al (2014) Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci U S A 111:2259–2264CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Barak M, Zuckerman NS, Edelman H et al (2008) IgTree©: creating immunoglobulin variable region gene lineage trees. J Immunol Methods 338:67–74CrossRefPubMedGoogle Scholar
  65. 65.
    Sok D, Laserson U, Laserson J et al (2013) The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS Pathog 9:e1003754CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lees WD, Shepherd AJ (2015) Utilities for high-throughput analysis of B-cell clonal lineages. J Immunol Res, Article ID 323506Google Scholar
  67. 67.
    Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wu X, Zhou T, Zhu J et al (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–1602CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences and Institute of Structural and Molecular Biology, BirkbeckUniversity of LondonLondonUK

Personalised recommendations