Skip to main content

Detection and Quantification Methods for Fibrillar Products of In Vitro Tau Aggregation Assays

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Alzheimer’s disease is characterized in part by the intracellular misfolding and aggregation of tau protein. The aggregates, which range in size from small oligomers to large filaments, are markers for disease diagnosis and staging, potential vectors for disease propagation, and candidate sources of neurotoxicity. Here we present protocols for synthesizing large tau aggregates characterized by filamentous morphology and cross-β-sheet structure from monomeric full-length tau precursors in vitro. We also describe their detection and quantification through thioflavin dye binding, filter trap, and transmission electron microscopy methods. These methods cover applications requiring high-throughput capability as well as those requiring high-resolution analysis of aggregation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreadis A (2012) Tau splicing and the intricacies of dementia. J Cell Physiol 227:1220–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282:23645–23654

    Article  CAS  PubMed  Google Scholar 

  4. Dafforn TR, Smith CJ (2004) Natively unfolded domains in endocytosis: hooks, lines and linkers. EMBO Rep 5:1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    Article  CAS  PubMed  Google Scholar 

  6. Lindwall G, Cole RD (1984) The purification of tau protein and the occurrence of two phosphorylation states of tau in brain. J Biol Chem 259:12241–12245

    CAS  PubMed  Google Scholar 

  7. von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming b structure. Proc Natl Acad Sci U S A 97:5129–5134

    Article  Google Scholar 

  8. Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J (2008) Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. J Biol Chem 283:13806–13816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhong Q, Congdon EE, Nagaraja HN, Kuret J (2012) Tau isoform composition influences rate and extent of filament formation. J Biol Chem 287:20711–20719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. George RC, Lew J, Graves DJ (2013) Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J Alzheimers Dis 36:21–40

    CAS  PubMed  Google Scholar 

  11. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787

    Article  CAS  PubMed  Google Scholar 

  12. Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q (2005) Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech 67:141–155

    Article  CAS  PubMed  Google Scholar 

  13. Tomoo K, Yao TM, Minoura K, Hiraoka S, Sumida M, Taniguchi T, Ishida T (2005) Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation. J Biochem 138:413–423

    Article  CAS  PubMed  Google Scholar 

  14. Chirita CN, Necula M, Kuret J (2003) Anionic micelles and vesicles induce tau fibrillization in vitro. J Biol Chem 278:25644–25650

    Article  CAS  PubMed  Google Scholar 

  15. Chirita CN, Kuret J (2004) Evidence for an intermediate in tau filament formation. Biochemistry 43:1704–1714

    Article  CAS  PubMed  Google Scholar 

  16. Chirita CN, Congdon EE, Yin H, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44:5862–5872

    Article  CAS  PubMed  Google Scholar 

  17. LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  CAS  PubMed  Google Scholar 

  18. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177:244–249

    Article  CAS  PubMed  Google Scholar 

  19. Kelenyi G (1967) On the histochemistry of azo group-free thiazole dyes. J Histochem Cytochem 15:172–180

    Article  CAS  PubMed  Google Scholar 

  20. King ME, Ahuja V, Binder LI, Kuret J (1999) Ligand-dependent tau filament formation: implications for Alzheimer’s disease progression. Biochemistry 38:14851–14859

    Article  CAS  PubMed  Google Scholar 

  21. Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E (1998) Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37:10223–10230

    Article  CAS  PubMed  Google Scholar 

  22. Honson NS, Johnson RL, Huang W, Inglese J, Austin CP, Kuret J (2007) Differentiating Alzheimer disease-associated aggregates with small molecules. Neurobiol Dis 28:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crowe A, Huang W, Ballatore C, Johnson RL, Hogan AM, Huang R, Wichterman J, McCoy J, Huryn D, Auld DS, Smith AB 3rd, Inglese J, Trojanowski JQ, Austin CP, Brunden KR, Lee VM (2009) Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 48:7732–7745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pickhardt M, von Bergen M, Gazova Z, Hascher A, Biernat J, Mandelkow EM, Mandelkow E (2005) Screening for inhibitors of tau polymerization. Curr Alzheimer Res 2:219–226

    Article  CAS  PubMed  Google Scholar 

  25. Wanker EE, Scherzinger E, Heiser V, Sittler A, Eickhoff H, Lehrach H (1999) Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol 309:375–386

    Article  CAS  PubMed  Google Scholar 

  26. Chang E, Kuret J (2008) Detection and quantification of tau aggregation using a membrane filter assay. Anal Biochem 373:330–336

    Article  CAS  PubMed  Google Scholar 

  27. Necula M, Kuret J (2004) Electron microscopy as a quantitative method for investigating tau fibrillization. Anal Biochem 329:238–246

    Article  CAS  PubMed  Google Scholar 

  28. Huseby CJ, Kuret J (2016) Analyzing tau aggregation with electron microscopy. Methods Mol Biol 1345:101–112

    Google Scholar 

  29. Hatters DM, Griffin MD (2011) Diagnostics for amyloid fibril formation: where to begin? Methods Mol Biol 752:121–136

    Article  CAS  PubMed  Google Scholar 

  30. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795

    Article  CAS  PubMed  Google Scholar 

  31. Carmel G, Leichus B, Cheng X, Patterson SD, Mirza U, Chait BT, Kuret J (1994) Expression, purification, crystallization, and preliminary x-ray analysis of casein kinase-1 from Schizosaccharomyces pombe. J Biol Chem 269:7304–7309

    CAS  PubMed  Google Scholar 

  32. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  33. Chang E, Congdon EE, Honson NS, Duff KE, Kuret J (2009) Structure-activity relationship of cyanine tau aggregation inhibitors. J Med Chem 52:3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Article  CAS  PubMed  Google Scholar 

  35. LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI (1995) Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci U S A 92:10369–10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolozin BL, Pruchnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232:648–650

    Article  CAS  PubMed  Google Scholar 

  37. Zhao D, Moore JS (2003) Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. Org Biomol Chem 1:3471–3491

    Article  CAS  PubMed  Google Scholar 

  38. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant NS077441. Electron micrographs were generated using instruments at the Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Kuret Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nanavaty, N., Lin, L., Hinckley, S.H., Kuret, J. (2017). Detection and Quantification Methods for Fibrillar Products of In Vitro Tau Aggregation Assays. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics