Tau Protein pp 89-100 | Cite as

X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands

  • Einav Tayeb-Fligelman
  • Meytal LandauEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1523)


Atomic structures of Tau involved in Alzheimer’s disease complexed with small molecule binders are the first step to define the Tau pharmacophore, leading the way to a structure-based design of improved diagnostics and therapeutics. Yet the partially disordered and polymorphic nature of Tau hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers, and their atomic structures can be determined using X-ray microcrystallography. Such structures were successfully used to design amyloid inhibitors. This chapter describes experimental procedures used to determine crystal structures of Tau peptide segments in complex with small-molecule binders.

Key words

Tau Alzheimer’s disease Small molecules Pharmacophore Microcrystals Amyloid-like peptides Microcrystallography 



ML thanks the U.S.-Israel Binational Science Foundation (BSF), Alon Fellowship from the Israeli Council for Higher Education, David and Inez Mayers Career Advancement Chair in Life Sciences, the J. and A. Tau Biological Research Fund, the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation, Center of Excellence in Integrated Structural Cell Biology; Grant No 1775/12, and the Support for training and career development of researchers (Marie Curie) CIG, Seventh framework program, Single Beneficiary.


  1. 1.
    Anand K, Sabbagh M (2015) Early investigational drugs targeting tau protein for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 24(10):1355–1360CrossRefPubMedGoogle Scholar
  2. 2.
    Brunden KR, Ballatore C, Crowe A et al (2010) Tau-directed drug discovery for Alzheimer’s disease and related tauopathies: a focus on tau assembly inhibitors. Exp Neurol 223:304–310CrossRefPubMedGoogle Scholar
  3. 3.
    Bulic B, Pickhardt M, Khlistunova I et al (2007) Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Angew Chem Int Ed Engl 119:9375–9379CrossRefGoogle Scholar
  4. 4.
    Bulic B, Pickhardt M, Mandelkow E-M et al (2010) Tau protein and tau aggregation inhibitors. Neuropharmacology 59:276–289CrossRefPubMedGoogle Scholar
  5. 5.
    Bulic B, Pickhardt M, Schmidt B et al (2009) Development of tau aggregation inhibitors for Alzheimer’s disease. Angew Chem Int Ed Engl 48:1740–1752CrossRefPubMedGoogle Scholar
  6. 6.
    Crowe A, Ballatore C, Hyde E et al (2007) High throughput screening for small molecule inhibitors of heparin-induced tau fibril formation. Biochem Biophys Res Commun 358:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fuse S, Matsumura K, Fujita Y et al (2014) Development of dual targeting inhibitors against aggregations of amyloid-β and tau protein. Eur J Med Chem 85:228–234CrossRefPubMedGoogle Scholar
  8. 8.
    Larbig G, Pickhardt M, Lloyd DG, Schmidt B, Mandelkow E (2007) Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr Alzheimer Res 4(3):315–323CrossRefPubMedGoogle Scholar
  9. 9.
    Harrington CR, Storey JMD, Clunas S et al (2015) Cellular models of aggregation-dependent template-directed proteolysis to characterize tau aggregation inhibitors for treatment of Alzheimer disease. J Biol Chem 290:10862–10875CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Karakani AM, Riazi G, Mahmood GS et al (2015) Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro. Iran J Basic Med Sci 18:485–492PubMedPubMedCentralGoogle Scholar
  11. 11.
    Paranjape SR, Riley AP, Somoza AD et al (2015) Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro. ACS Chem Neurosci 6:751–760CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wobst HJ, Sharma A, Diamond MI et al (2015) The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 589:77–83CrossRefPubMedGoogle Scholar
  13. 13.
    Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci U S A 98:2375–2380CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ivanova MI, Thompson MJ, Eisenberg D (2006) A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Proc Natl Acad Sci U S A 103:4079–4082CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefPubMedGoogle Scholar
  17. 17.
    Wiltzius JJ, Sievers SA, Sawaya MR et al (2008) Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 17:1467–1474CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ivanova MI, Sievers SA, Sawaya MR et al (2009) Molecular basis for insulin fibril assembly. Proc Natl Acad Sci U S A 106:18990–18995CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wiltzius JJ, Landau M, Nelson R et al (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wiltzius JJ, Sievers SA, Sawaya MR et al (2009) Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci 18:1521–1530CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Laganowsky A, Benesch JL, Landau M et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Apostol MI, Wiltzius JJ, Sawaya MR et al (2011) Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochemistry 50:2456–2463CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Colletier JP, Laganowsky A, Landau M et al (2011) Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci U S A 108:16938–16943CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu C, Zhao M, Jiang L et al (2012) Out-of-register beta-sheets suggest a pathway to toxic amyloid aggregates. Proc Natl Acad Sci U S A 109:20913–20918CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sievers SA, Karanicolas J, Chang HW et al (2011) Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475:96–100CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiang L, Liu C, Leibly D et al (2013) Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. Elife 2:e00857PubMedPubMedCentralGoogle Scholar
  27. 27.
    Landau M, Sawaya MR, Faull KF et al (2011) Towards a pharmacophore for amyloid. PLoS Biol 9:e1001080CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    von Bergen M, Friedhoff P, Biernat J et al (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A 97:5129–5134CrossRefGoogle Scholar
  29. 29.
    Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901CrossRefPubMedGoogle Scholar
  30. 30.
    Jacobson A, Petric A, Hogenkamp D et al (1996) 1,1-Dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J Am Chem Soc 118:5572–5579CrossRefGoogle Scholar
  31. 31.
    Krebs MR, Bromley EH, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37CrossRefPubMedGoogle Scholar
  32. 32.
    Wolfe LS, Calabrese MF, Nath A et al (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci U S A 107:16863–16868CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Childers WS, Mehta AK, Lu K et al (2009) Templating molecular arrays in Amyloid’s cross-{beta} grooves. J Am Chem Soc 131:10165–10172CrossRefPubMedGoogle Scholar
  34. 34.
    Schutz AK, Soragni A, Hornemann S et al (2011) The amyloid-Congo red interface at atomic resolution. Angew Chem Int Ed Engl 50:5956–5960CrossRefPubMedGoogle Scholar
  35. 35.
    Goldschmidt L, Teng PK, Riek R et al (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107:3487–3492CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fernandez-Escamilla AM, Rousseau F, Schymkowitz J et al (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306CrossRefPubMedGoogle Scholar
  37. 37.
    Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242CrossRefPubMedGoogle Scholar
  38. 38.
    Tartaglia GG, Pawar AP, Campioni S et al (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380:425–436CrossRefPubMedGoogle Scholar
  39. 39.
    Moshe A, Landau M, Eisenberg D (2016) Preparation of crystalline samples of amyloid fibrils and oligomers. In: Eliezer D (ed) Protein amyloid aggregation, vol 1345, Methods and protocols, methods in molecular biology. Springer, New York, pp 201–210. doi: 10.1007/978-1-4939-2978-8_13 CrossRefGoogle Scholar
  40. 40.
    Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800CrossRefGoogle Scholar
  41. 41.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM (eds) Macromolecular crystallography, part A, vol 276. Academic, New YorkCrossRefGoogle Scholar
  42. 42.
    Read RJ (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr 57:1373–1382CrossRefPubMedGoogle Scholar
  43. 43.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255CrossRefPubMedGoogle Scholar
  44. 44.
    Adams PD, Afonine PV, Bunkoczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bricogne G, Blanc E, Brandl M et al (2009) BUSTER, Version 2.8.0. Global Phasing Ltd., Cambridge, UKGoogle Scholar
  46. 46.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132CrossRefPubMedGoogle Scholar
  47. 47.
    Ivanova MI, Sievers SA, Guenther EL et al (2014) Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 111:197–201CrossRefPubMedGoogle Scholar
  48. 48.
    Bostrom J, Greenwood JR, Gottfries J (2003) Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J Mol Graph Model 21:449–462CrossRefPubMedGoogle Scholar
  49. 49.
    Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385:381–392CrossRefPubMedGoogle Scholar
  50. 50.
    Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65:538–548CrossRefPubMedGoogle Scholar
  51. 51.
    Brunger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of BiologyTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations