Skip to main content
View expanded cover

Liposomes pp 209–226Cite as

Long-Circulating, pH-Sensitive Liposomes

Part of the Methods in Molecular Biology book series (MIMB,volume 1522)

Abstract

A major limiting factor for the wide application of pH-sensitive liposomes is their recognition and sequestration by the phagocytes of the reticuloendothelial system, which conditions a very short circulation half-life. Typically prolonged circulation of liposomes is achieved by grafting their membranes with pegylated phospholipids (PEG-lipids), which have been shown, however, to deteriorate membrane integrity on one hand and to hamper the pH-responsiveness on the other. Hence, the need for novel alternative surface modifying agents to ensure effective half-life prolongation of pH-sensitive liposomes is a subject of intensive research. A series of copolymers having short blocks of lipid-mimetic units has been shown to sterically stabilize conventional liposomes based on different phospholipids. This has prompted us to broaden their utilization to pH-sensitive liposomes, too. The present contribution gives a thorough account on the chemical synthesis of these copolymers their incorporation in DOPE:CHEMs pH-sensitive liposomes and detailed explanation on the battery of techniques for the biopharmaceutical characterization of the prepared formulations in terms of pH-responsiveness, cellular internalization, in vivo pharmacokinetics and biodistribution.

Key words

  • pH-sensitive liposomes
  • Steric stabilization
  • PEG-lipids
  • Block copolymers

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6591-5_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6591-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beesley J, Roush C, Baker L (2004) High-throughput molecular pathology in human tissues as a method for driving drug discovery. Drug Discov Today 9:182–189

    CAS  CrossRef  PubMed  Google Scholar 

  2. Hoever M, Zbinden P (2004) The evolution of microarrayed compound screening. Drug Discov Today 9:358–365

    CAS  CrossRef  PubMed  Google Scholar 

  3. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(S2):81–91

    CrossRef  Google Scholar 

  4. Torchilin VP (ed) (2006) Nanoparticulates as pharmaceutical carriers. Imperial College Press, London

    Google Scholar 

  5. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–245

    CAS  CrossRef  PubMed  Google Scholar 

  6. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    CAS  CrossRef  PubMed  Google Scholar 

  7. Woodle MC (1995) Sterically stabilized liposome therapeutics. Adv Drug Deliver Rev 16:249–265

    CAS  CrossRef  Google Scholar 

  8. Lasic DD, Vallner JJ, Working PK (1999) Sterically stabilized liposomes in cancer therapy and gene delivery. Curr Opin Mol Ther 1:177–185

    CAS  PubMed  Google Scholar 

  9. Mayer LD, Tai LC, Balli MB, Mitilenes GN, Ginsberg RC, Cullis PR (1990) Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biophys Biochim Acta 1025:143–151

    CAS  CrossRef  Google Scholar 

  10. Harrigan PR, Wong KF, Redelmeier TE, Wheeler JJ, Cullis PR (1993) Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim Biophys Acta 1149:329–338

    CAS  CrossRef  PubMed  Google Scholar 

  11. Maurer-Spurej E, Wong KF, Maurer N, Fenske DB, Cullis PR (1999) Factors influencing uptake and retention of amion-containing drugs in large unilamellar vesicles exhibiting trans-membrane pH gradients. Biophys Biochim Acta 1416:1–10

    CAS  CrossRef  Google Scholar 

  12. Straubinger RM, Hong K, Friend DS (1983) Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization of coated vesicles. Cell 32:1069–1079

    CAS  CrossRef  PubMed  Google Scholar 

  13. Huakg A, Kennel SJ, Huang L (1983) Interaction of immunoliposomes with target cells. J Biol Chem 258:14034–14040

    Google Scholar 

  14. Dijkstra J, Van Galen M, Scherphof GL (1984) Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by Kupffer cells in vitro. Biochim Biophys Acta 804:58–97

    CAS  CrossRef  PubMed  Google Scholar 

  15. Asokan A, Cho MJ (2002) Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci 91:903–913

    CAS  CrossRef  PubMed  Google Scholar 

  16. Drummond DC, Zignani M, Leroux J-C (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    CAS  CrossRef  PubMed  Google Scholar 

  17. Simões S, Slepushkin VA, Düsgüneş N, Pedroso de Lima MC (2001) On the mechanism of internalization and intracellular delivery mediated by pH-sensitive liposomes. Biochim Biophys Acta 1515:23–37

    CrossRef  PubMed  Google Scholar 

  18. Venugapalan P, Jian S, Sankar S, Singh P, Vyas SP (2002) pH-sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects. Pharmacie 56:659–671

    Google Scholar 

  19. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–238

    CAS  CrossRef  PubMed  Google Scholar 

  20. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AAJ, Trubetskoy VS, Herron JN, Gentry CA (1994) Poly(ethylene glycol) on the liposomes surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1195:11–20

    CAS  CrossRef  PubMed  Google Scholar 

  21. Hristova K, Kenworthy A, McIntosh TJ (1995) Effect of bilayer composition on the phase behavior of liposomal suspension containing poly(ethylene glycol)-lipids. Macromolecules 28:7693–7699

    CAS  CrossRef  Google Scholar 

  22. Belisto S, Bartucci R, Montesano G, Marsh D, Sportelli L (2000) Molecular and mesoscopic properties of hydrophilic polymer-grafted phospholipids mixed with phosphatidylcholine in aqueous dispersion: Interaction of dipalmitoyl N-poly(ethylene glycol) phosphatidylethanolamine with dipalmitoylphosphatidylcholine studied by spectrophotometry and spin-label electron spin. Biophys J 78:1420–1430

    CrossRef  Google Scholar 

  23. Marsh D, Bartucci R, Sportelli L (2003) Lipid membranes with grafted polymers: physicochemical aspects. Biochim Biophys Acta 1615:35–59

    Google Scholar 

  24. Slepushkin VA, Simões S, Dazin P, Newman MS, Guo LS, Pedroso de Lima MC, Düsgüneş N (1997) Sterically stabilized pH sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 272:2382–2388

    CAS  CrossRef  PubMed  Google Scholar 

  25. Hong M-S, Lim S-J, Oh Y-K, Kim C-K (2002) pH-sensitive, serum stable and long-circulating liposomes as a new drug delivery system. J Pharm Pharmacol 54:51–58

    CAS  CrossRef  PubMed  Google Scholar 

  26. Guo X, Szoka FC Jr (2001) Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug Chem 12:291–300

    CAS  CrossRef  PubMed  Google Scholar 

  27. Guo X, MacKay JA, Szoka FC Jr (2003) Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biphys J 84:1784–1795

    CAS  CrossRef  Google Scholar 

  28. Boomer A, Inerowiz HD, Zhang Z, Bergstrad N, Edwards K, Kim JM, Thompson DH (2003) Acid-triggered release from sterically stabilized fusogenic liposomes via a hydrolytic dePEGylation strategy. Langmuir 19:6408–6415

    CAS  CrossRef  Google Scholar 

  29. Masson C, Garinot M, Mignet N, Wetzer B, Mailhe P, Scherman D, Bessodes M (2004) pH-sensitive PEG lipids containing orthoester linkers:new potential tools for nonviral gene delivery. J Control Release 99:423–434

    CAS  CrossRef  PubMed  Google Scholar 

  30. Roux E, Stomp R, Pezolet M, Moreau P, Leroux J-C (2002) Steric stabilization of liposomes by pH-responsive N-isopopylacrylamide copolymer. J Pharm Sci 91:1795–1802

    CAS  CrossRef  PubMed  Google Scholar 

  31. Roux E, Passirani C, Scheffold S, Benoit J-P, Leroux J-C (2004) Serum stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release 94:447–451

    CAS  CrossRef  PubMed  Google Scholar 

  32. Holland JW, Hui C, Cullis PR, Madden TD (1996) Poly(ethylene glycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 35:2618–2624

    CAS  CrossRef  PubMed  Google Scholar 

  33. Johnsson M, Edwards K (2001) Phase behavior and aggregate structure in mixtures of dioleoylphosphathidylethanolamine and poly(ethylene glycol)-lipids. Biophys J 80:313–323

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Rangelov S, Almgren M, Tsvetanov C, Edwards K (2002) Synthesis, characterization and aggregation behavior of block copolymers bearing blocks of lipid-mimetic aliphatic double chain units. Macromolecules 35:4770–4778

    CAS  CrossRef  Google Scholar 

  35. Rangelov S, Almgren M, Tsvetanov C, Edwards K (2002) Shear-induced rearrangement of self-assembled PEG-lipid structures in water. Macromolecules 35:7074–7081

    CAS  CrossRef  Google Scholar 

  36. Rangelov S, Almgren M, Edwards K, Tsvetanov C (2004) Formation of normal and reverse bilayer structures by self-assembly of nonionic block copolymers bearing lipid-mimetic units. J Phys Chem B 108:7542–7552

    CAS  CrossRef  Google Scholar 

  37. Rangelov S, Edwards K, Almgren M, Karlsson G (2003) Steric stabilization of egg-phosphathidyl choline liposomes by copolymers bearing short blocks of lipid-mimetic units. Langmuir 19:172–181

    CAS  CrossRef  Google Scholar 

  38. Momekova D, Rangelov S, Yanev S, Nikolova E, Konstantinov S, Romberg B, Storm G, Lambov N (2007) Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. Eur J Pharm Sci 32:308–317

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denitsa Momekova Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Momekova, D., Rangelov, S., Lambov, N. (2017). Long-Circulating, pH-Sensitive Liposomes. In: D'Souza, G. (eds) Liposomes. Methods in Molecular Biology, vol 1522. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6591-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6591-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6589-2

  • Online ISBN: 978-1-4939-6591-5

  • eBook Packages: Springer Protocols