Advertisement

Synthesis of Modified mRNA for Myocardial Delivery

  • Jason Kondrat
  • Nishat Sultana
  • Lior Zangi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1521)

Abstract

Cardiac gene therapy shows tremendous promise in combating the growing problem of heart disease. Modified mRNA (modRNA) is a novel gene delivery system used in vitro or in vivo to achieve transient expression of therapeutic proteins in a heterogeneous population of cells. Incorporation of specific modified nucleosides enables modRNA to be translated efficiently without triggering antiviral and innate immune responses. ModRNA has been shown to be effective at delivering short-term robust gene expression to the heart and its use in the field of cardiac gene therapy is expanding. Here, we describe a stepwise protocol for the synthesis of modRNA for in vivo myocardial delivery.

Key words

Modified mRNA Myocardial infarction Myocardial delivery Gene therapy In vitro transcription 

Notes

Acknowledgment

We thank Jiqiu Chen for his surgical assistance and W. Ebina, L. Warren, D. Rossi, P. Mandel for past contributions. This work was funded in part by a seed package from the Icahn School of Medicine at Mount Sinai, New York, New York.

References

  1. 1.
    MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, Lotery AJ, Downes SM, Webster AR, Seabra MC (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A, Ly H, Kawase Y, Wagner K, Borow K, Jaski B, London B, Greenberg B, Pauly DF, Patten R, Starling R, Mancini D, Jessup M (2008) Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14(5):355–367PubMedCrossRefGoogle Scholar
  3. 3.
    Schirmer JM, Miyagi N, Rao VP, Ricci D, Federspiel MJ, Kotin RM, Russell SJ, McGregor CG (2007) Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transpl Int 20(6):550–557PubMedCrossRefGoogle Scholar
  4. 4.
    Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, Spater D, Xu H, Tabebordbar M, Gorbatov R, Sena B, Nahrendorf M, Briscoe DM, Li RA, Wagers AJ, Rossi DJ, Pu WT, Chien KR (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31(10):898–907PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lui KO, Zangi L, Chien KR (2014) Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Res 13(3 Pt B):693–704PubMedCrossRefGoogle Scholar
  7. 7.
    Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29(2):154–157PubMedCrossRefGoogle Scholar
  8. 8.
    Mandal PK, Rossi DJ (2013) Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 8(3):568–582PubMedCrossRefGoogle Scholar
  9. 9.
    Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Avci-Adali M, Behring A, Keller T, Krajewski S, Schlensak C, Wendel HP (2014) Optimized conditions for successful transfection of human endothelial cells with in vitro synthesized and modified mRNA for induction of protein expression. J Biol Eng 8(1):8. doi: 10.1186/1754-1611-8-8 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kariko K, Weissman D (2007) Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Devel 10(5):523–532PubMedGoogle Scholar
  12. 12.
    Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Kariko K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38(17):5884–5892PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jason Kondrat
    • 1
    • 2
    • 3
  • Nishat Sultana
    • 1
    • 2
    • 3
  • Lior Zangi
    • 1
    • 2
    • 3
  1. 1.Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations