Skip to main content

Gene Transfer in Isolated Adult Cardiomyocytes

  • Protocol
  • First Online:
Cardiac Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1521))

Abstract

During the past few decades, gene delivery using recombinant virus has made tremendous progress. With a higher than 80 % transduction efficiency, even in non-dividing cells, viral transduction has become the method of choice for efficient gene transfer into cardiomyocytes. However, in vitro gene delivery is dependent on a robust cell isolation protocol, as prolonged cultivation is needed to initiate gene expression and target specific cellular processes. This chapter describes some of the important steps that need to be considered for successful in vitro gene transfer into adult cardiomyocytes. Included are detailed protocols for isolating cells, maintaining rod shaped cardiomyocytes in culture over several days, and employing adenovirus for gene transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawai M, Kawashima S, Sakoda T, Toh R, Kikuchi A, Yamauchi-Takihara K, Kunisada K, Yokoyama M (2003) Ral GDP dissociation stimulator and Ral GTPase are involved in myocardial hypertrophy. Hypertension 41(4):956–962

    Article  CAS  PubMed  Google Scholar 

  2. Lam ML, Bartoli M, Claycomb WC (2002) The 21-day postnatal rat ventricular cardiac muscle cell in culture as an experimental model to study adult cardiomyocyte gene expression. Mol Cell Biochem 229(1-2):51–62

    Article  CAS  PubMed  Google Scholar 

  3. Wu JC, Chung TH, Tseng YZ, Wang SM (1999) N-cadherin/catenin-based costameres in cultured chicken cardiomyocytes. J Cell Biochem 75(1):93–104

    Article  CAS  PubMed  Google Scholar 

  4. Xu H, Miller J, Liang BT (1992) High-efficiency gene transfer into cardiac myocytes. Nucleic Acids Res 20(23):6425–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell’Italia LJ, Marchase RB (2002) Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 277(16):14266–14273

    Article  CAS  PubMed  Google Scholar 

  7. Lan X, Yin X, Wang R, Liu Y, Zhang Y (2009) Comparative study of cellular kinetics of reporter probe [131 I] FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors. Nucl Med Biol 36(2):207–213

    Article  CAS  PubMed  Google Scholar 

  8. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 20(17):4998–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51(3):288–298. doi:10.1016/j.yjmcc.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Muinck ED (2009) Gene and cell therapy for heart failure. Antioxid Redox Signal 11(8):2025–2042

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, Cipriani L, Leinwand LA (1993) Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci U S A 90(24):11498–11502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A (1999) Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100(23):2373–2379

    Article  CAS  PubMed  Google Scholar 

  13. Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL, Makimura H, Kaplitt MJ, Strumpf RK, Diethrich EB (1996) Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 62(6):1669–1676

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Pettigrew GJ, Thomas J, Vandenberg JI, Delriviere L, Bolton EM, Carmichael A, Martin JL, Marber MS, Lever AM (2002) Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 97(5):348–358

    Article  CAS  PubMed  Google Scholar 

  15. Poliakova L, Kovesdi I, Wang X, Capogrossi MC, Talan M (1999) Vascular permeability effect of adenovirus-mediated vascular endothelial growth factor gene transfer to the rabbit and rat skeletal muscle. J Thorac Cardiovasc Surg 118(2):339–347

    Article  CAS  PubMed  Google Scholar 

  16. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholová I, Kauppinen RA, Achen MG, Stacker SA (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92(10):1098–1106

    Article  CAS  PubMed  Google Scholar 

  17. Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, Silvennoinen P, Kivelä A, Hedman A, Hedman M, Heikura T, Ordén M-R (2004) Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 109(8):1029–1035

    Article  CAS  PubMed  Google Scholar 

  18. Rissanen TT, Ylä-Herttuala S (2007) Current status of cardiovascular gene therapy. Mol Ther 15(7):1233–1247

    Article  CAS  PubMed  Google Scholar 

  19. Vassalli G, Büeler H, Dudler J, von Segesser LK, Kappenberger L (2003) Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 90(2):229–238

    Article  PubMed  Google Scholar 

  20. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317

    Article  CAS  PubMed  Google Scholar 

  21. Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5(3):285–297

    Article  CAS  PubMed  Google Scholar 

  22. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70(5):3227–3234

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 16(10):1648–1656

    Article  CAS  PubMed  Google Scholar 

  25. Langendorff O (1895) Untersuchungen am überlebenden Säugethierherzen. Pflugers Arch 61(6):291–332. doi:10.1007/BF01812150

    Article  Google Scholar 

  26. Bell RM, Mocanu MM, Yellon DM (2011) Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50(6):940–950. doi:10.1016/j.yjmcc.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  27. Claycomb WC, Palazzo MC (1980) Culture of the terminally differentiated adult cardiac-muscle cell - a light and scanning electron-microscope study. 9. Dev Biol 80(2):466–482. doi:10.1016/0012-1606(80)90419-4

    Article  CAS  PubMed  Google Scholar 

  28. Jacobson SL (1977) Culture of spontaneously contracting myocardial cells from adult rats. Cell Struct Funct 2(1):1–9

    Article  Google Scholar 

  29. Harder B, Schaub M, Eppenberger H, Eppenberger-Eberhardt M (1996) Influence of fibroblast growth factor (bFGF) and insulin-like growth factor (IGF-I) on cytoskeletal and contractile structures and on atrial natriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture. J Mol Cell Cardiol 28(1):19–31

    Article  CAS  PubMed  Google Scholar 

  30. Piper H, Probst I, Schwartz P, Hütter F, Spieckermann P (1982) Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol 14(7):397–412

    Article  CAS  PubMed  Google Scholar 

  31. Freshney RI (2011) Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons, New York, NY

    Google Scholar 

  32. Mitcheson JS, Hancox JC, Levi AJ (1998) Cultured adult cardiac myocytes. Cardiovasc Res 39(2):280–300

    Article  CAS  PubMed  Google Scholar 

  33. Volz A, Piper HM, Siegmund B, Schwartz P (1991) Longevity of adult ventricular rat heart muscle cells in serum-free primary culture. J Mol Cell Cardiol 23(2):161–173

    Article  CAS  PubMed  Google Scholar 

  34. Tian Q, Pahlavan S, Oleinikow K, Jung J, Ruppenthal S, Scholz A, Schumann C, Kraegeloh A, Oberhofer M, Lipp P (2012) Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J Mol Cell Cardiol 52(1):113–124

    Article  CAS  PubMed  Google Scholar 

  35. Hilal-Dandan R, Kanter JR, Brunton LL (2000) Characterization of G-protein signaling in ventricular myocytes from the adult mouse heart: differences from the rat. J Mol Cell Cardiol 32(7):1211–1221. doi:10.1006/jmcc.2000.1156

    Article  CAS  PubMed  Google Scholar 

  36. Louch WE, Hake J, Jolle GF, Mork HK, Sjaastad I, Lines GT, Sejersted OM (2010) Control of Ca2+ release by action potential configuration in normal and failing murine cardiomyocytes. Biophys J 99(5):1377–1386. doi:10.1016/j.bpj.2010.06.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolska BM, Solaro RJ (1996) Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am J Physiol Heart Circ Physiol 271(3):H1250–H1255

    CAS  Google Scholar 

  38. O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296

    PubMed  Google Scholar 

  39. Cerbai E, Sartiani L, De Paoli P, Mugelli A (2000) Isolated cardiac cells for electropharmacological studies. Pharmacol Res 42(1):1–8. doi:10.1006/phrs.1999.0654

    Article  CAS  PubMed  Google Scholar 

  40. Ren J, Wold LE (2001) Measurement of cardiac mechanical function in isolated ventricular myocytes from rats and mice by computerized video-based imaging. Biol Proced Online 3(1):43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Y-Y, Wang S-Q, Zhu W-Z, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao R-P (2000) Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 279(1):H429–H436

    CAS  PubMed  Google Scholar 

  42. Garanina E, Mukhamedshina Y, Salafutdinov I, Kiyasov A, Lima L, Reis H, Palotás A, Islamov R, Rizvanov A (2016) Construction of recombinant adenovirus containing picorna-viral 2A-peptide sequence for the co-expression of neuro-protective growth factors in human umbilical cord blood cells. Spinal Cord 54:423. doi:10.1038/sc.2015.162

    Article  CAS  PubMed  Google Scholar 

  43. Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, Kim M-K, Shin BA, Choi S-Y (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4):e18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Louch Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hodne, K., Lipsett, D.B., Louch, W.E. (2017). Gene Transfer in Isolated Adult Cardiomyocytes. In: Ishikawa, K. (eds) Cardiac Gene Therapy. Methods in Molecular Biology, vol 1521. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6588-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6588-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6586-1

  • Online ISBN: 978-1-4939-6588-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics