Clickable Polymeric Coating for Glycan Microarrays

  • Caterina Zilio
  • Laura SolaEmail author
  • Marina Cretich
  • Anna Bernardi
  • Marcella Chiari
Part of the Methods in Molecular Biology book series (MIMB, volume 1518)


The interaction of carbohydrates with a variety of biological targets, including antibodies, proteins, viruses, and cells are of utmost importance in many aspects of biology. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins. In this study, a novel microarray support is reported for the fabrication of glycan arrays that combines the higher sensitivity of a layered Si-SiO2 surface with a novel polymeric coating easily modifiable by subsequent click reaction. The alkyne-containing copolymer, adsorbed from an aqueous solution, produces a coating by a single step procedure and serves as a soft, tridimensional support for the oriented immobilization of carbohydrates via azide/alkyne Cu (I) catalyzed “click” reaction. The advantages of a functional 3D polymer coating making use of a click chemistry immobilization are combined with the high fluorescence sensitivity and superior signal-to-noise ratio of a Si-SiO2 substrate. The proposed approach enables the attachment of complex sugars on a silicon oxide surface by a method that does not require skilled personnel and chemistry laboratories.

Key words

Glycan microarray Click chemistry Oriented immobilization Polymeric coating 


  1. 1.
    Castel D, Pitaval A, Debily MA, Gidrol X (2006) Cell microarrays in drug discovery. Drug Discov Today 11:616–622. doi: 10.1016/j.drudis.2006.05.015 CrossRefPubMedGoogle Scholar
  2. 2.
    Schulze A, Downward J (2001) Navigating gene expression using microarrays—a technology review. Nat Cell Biol 3:E190–E195. doi: 10.1038/35087138 CrossRefPubMedGoogle Scholar
  3. 3.
    Ramsay G (1998) DNA chips: state-of-the art. Nat Biotechnol 16:40–44. doi: 10.1038/nbt0198-40 CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson DG, Putnam D, Lavik EB et al (2005) Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26:4892–4897. doi: 10.1016/j.biomaterials.2004.11.052 CrossRefPubMedGoogle Scholar
  5. 5.
    Wu C-Y, Liang P-H, Wong C-H (2009) New development of glycan arrays. Org Biomol Chem 7:2247–2254. doi: 10.1039/b902510n CrossRefPubMedGoogle Scholar
  6. 6.
    Kolb HC, Ernst B (1997) Development of tools for the design of selectin antagonists. Chemistry 1:1571–1578CrossRefGoogle Scholar
  7. 7.
    Kaila N, Thomas BE, Thakker P et al (2001) Design and synthesis of sialyl Lewis x mimics as E-selectin inhibitors. Bioorg Med Chem Lett 11:151–155. doi: 10.1016/S0960-894X(00)00623-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Ernst B, Magnani JL (2009) From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 8:661–677. doi: 10.1038/nrd2852 CrossRefPubMedGoogle Scholar
  9. 9.
    Prost LR, Grim JC, Tonelli M, Kiessling LL (2012) Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. ACS Chem Biol 7:1603–1608. doi: 10.1021/cb300260p CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bernardi A, Cheshev P (2008) Interfering with the sugar code: design and synthesis of oligosaccharide mimics. Chemistry 14:7434–7441CrossRefPubMedGoogle Scholar
  11. 11.
    Oyelaran O, Gildersleeve JC (2009) Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol 13:406–413. doi: 10.1016/j.cbpa.2009.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rillahan CD, Paulson JC (2011) Glycan microarrays for decoding the glycome. Annu Rev Biochem 80:797–823. doi: 10.1146/annurev-biochem-061809-152236 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang Y, Li Q, Rodriguez LG, Gildersleeve JC (2010) An array-based method to identify multivalent inhibitors. J Am Chem Soc 132:9653–9662. doi: 10.1021/ja100608w CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oyelaran O, Li Q, Farnsworth D, Gildersleeve JC (2009) Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies. J Proteome Res 8:3529–3538. doi: 10.1021/pr9002245 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hanson SR, Greenberg WA, Wong CH (2007) Probing glycans with the copper(I)-catalyzed [3 + 2] azide–alkyne cycloaddition. QSAR Comb Sci 26:1243–1252. doi: 10.1002/qsar.200740112 CrossRefGoogle Scholar
  16. 16.
    Fazio F, Bryan MC, Blixt O et al (2002) Synthesis of sugar arrays in microtiter plate. J Am Chem Soc 124:14397–14402. doi: 10.1021/ja020887u CrossRefPubMedGoogle Scholar
  17. 17.
    Bryan MC, Fazio F, Lee HK et al (2004) Covalent display of oligosaccharide arrays in microtiter plates. J Am Chem Soc 126:8640–8641. doi: 10.1021/ja048433f CrossRefPubMedGoogle Scholar
  18. 18.
    Wu P, Malkoch M, Hunt JN et al (2005) Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun (Camb) 5775–5777. doi: 10.1039/b512021g
  19. 19.
    Sun XL, Stabler CL, Cazalis CS, Chaikof EL (2006) Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. Bioconjug Chem 17:52–57. doi: 10.1021/bc0502311 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Y, Luo S, Tang Y et al (2006) Carbohydrate-protein interactions by “clicked” carbohydrate self-assembled monolayers. Anal Chem 78:2001–2008. doi: 10.1021/ac051919+ CrossRefPubMedGoogle Scholar
  21. 21.
    Michel O, Ravoo BJ (2008) Carbohydrate microarrays by microcontact “click” chemistry. Langmuir 24:12116–12118. doi: 10.1021/la802304w CrossRefPubMedGoogle Scholar
  22. 22.
    Nandivada H, Chen HY, Bondarenko L, Lahann J (2006) Reactive polymer coatings that “click”. Angew Chemie Int Ed 45:3360–3363. doi: 10.1002/anie.200600357 CrossRefGoogle Scholar
  23. 23.
    Yang WJ, Pranantyo D, Neoh KG et al (2012) Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling. Biomacromolecules 13:2769–2780. doi: 10.1021/bm300757e CrossRefPubMedGoogle Scholar
  24. 24.
    Saha S, Bruening ML, Baker GL (2012) Surface-initiated polymerization of azidopropyl methacrylate and its film elaboration via click chemistry. Macromolecules 45:9063–9069. doi: 10.1021/ma301556v CrossRefGoogle Scholar
  25. 25.
    Zilio C, Bernardi A, Palmioli A et al (2015) New “clickable” polymeric coating for glycan microarrays. Sens Actuators B Chem 215:412–420. doi: 10.1016/j.snb.2015.03.079 CrossRefGoogle Scholar
  26. 26.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chemie Int Ed 41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CrossRefGoogle Scholar
  27. 27.
    Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. doi: 10.1021/jo011148j CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Q, Chan TR, Hilgraf R et al (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125:3192–3193. doi: 10.1021/ja021381e CrossRefPubMedGoogle Scholar
  29. 29.
    Cretich M, Di Carlo G, Longhi R et al (2009) High sensitivity protein assays on microarray silicon slides. Anal Chem 81:5197–5203. doi: 10.1021/ac900658c CrossRefPubMedGoogle Scholar
  30. 30.
    Cretich M, Breda D, Damin F et al (2010) Allergen microarrays on high-sensitivity silicon slides. Anal Bioanal Chem 398:1723–1733. doi: 10.1007/s00216-010-4077-x CrossRefPubMedGoogle Scholar
  31. 31.
    Ladmiral V, Mantovani G, Clarkson GJ, Cauet S, Irwin JL, Haddleton DM (2006) Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J Am Chem Soc 128:4823–4830. doi: 10.1021/ja058364k CrossRefPubMedGoogle Scholar
  32. 32.
    Nisic F, Speciale G, Bernardi A (2012) Stereoselective synthesis of α- and β-glycofuranosyl amides by traceless ligation of glycofuranosyl azides. Chemistry 18:6895–6906. doi: 10.1002/chem.201200309 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Caterina Zilio
    • 1
  • Laura Sola
    • 1
    Email author
  • Marina Cretich
    • 1
  • Anna Bernardi
    • 2
  • Marcella Chiari
    • 1
  1. 1.Istituto di Chimica del Riconoscimento Molecolare, CNRMilanItaly
  2. 2.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations