Quantitative Efferocytosis Assays

  • Amanda L. Evans
  • Jack W. D. Blackburn
  • Charles Yin
  • Bryan HeitEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1519)


Efferocytosis, the phagocytic removal of apoptotic cells, is a dynamic process requiring recruitment of numerous regulatory proteins to forming efferosomes in a tightly regulated manner. Herein we describe microscopy-based methods for the enumeration of efferocytic events and characterization of the spatiotemporal dynamics of signaling molecule recruitment to efferosomes, using genetically encoded probes and immunofluorescent labeling. While these methods are illustrated using macrophages, they are applicable to any efferocytic cell type.

Key words

Efferocytosis Phagocytosis Method Microscopy Immunostaining Macrophage 


  1. 1.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi: 10.1080/01926230701320337 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wallach D, Kang T-B, Rajput A et al (2010) Anti-inflammatory functions of the “apoptotic” caspases. Ann N Y Acad Sci 1209:17–22. doi: 10.1111/j.1749-6632.2010.05742.x CrossRefPubMedGoogle Scholar
  3. 3.
    Wickman G, Julian L, Olson MF (2012) How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ 19:735–742. doi: 10.1038/cdd.2012.25 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eligini S, Crisci M, Bono E et al (2012) Human monocyte-derived macrophages spontaneously differentiated in vitro show distinct phenotypes. J Cell Physiol. doi: 10.1002/jcp.24301 PubMedGoogle Scholar
  5. 5.
    Heo K-S, Cushman HJ, Akaike M et al (2014) ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis. Circulation 130:180–191. doi: 10.1161/CIRCULATIONAHA.113.005991 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thorp E, Cui D, Schrijvers DM et al (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler Thromb Vasc Biol 28:1421–1428. doi: 10.1161/ATVBAHA.108.167197 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Thorp EB (2010) Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 15:1124–1136. doi: 10.1007/s10495-010-0516-6 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wigren M, Nilsson J, Kaplan MJ (2015) Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and possible targets for intervention. J Intern Med 278:494–506. doi: 10.1111/joim.12357 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kimani SG, Geng K, Kasikara C et al (2014) Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity. Front Immunol 5:566. doi: 10.3389/fimmu.2014.00566 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Recarte-Pelz P, Tàssies D, Espinosa G et al (2013) Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: correlation with common genetic variants and disease activity. Arthritis Res Ther 15:R41. doi: 10.1186/ar4199 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Peter C, Waibel M, Radu CG et al (2008) Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem 283:5296–5305. doi: 10.1074/jbc.M706586200 CrossRefPubMedGoogle Scholar
  12. 12.
    Qingxian L, Qiutang L, Qingjun L (2010) Regulation of phagocytosis by TAM receptors and their ligands. Front Biol (Beijing) 5:227–237CrossRefGoogle Scholar
  13. 13.
    Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90:1513–1522. doi: 10.1172/JCI116019 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu Y, Singh S, Georgescu M-M, Birge RB (2005) A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118:539–553. doi: 10.1242/jcs.01632 CrossRefPubMedGoogle Scholar
  15. 15.
    Nandrot EF, Anand M, Almeida D et al (2007) Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis. Proc Natl Acad Sci U S A 104:12005–12010. doi: 10.1073/pnas.0704756104 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566. doi: 10.1038/ncb1718 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ichimura T, Asseldonk EJPV, Humphreys BD et al (2008) Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118:1657–1668. doi: 10.1172/JCI34487 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207:1807–1817. doi: 10.1084/jem.20101157 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838. doi: 10.1038/nature09583 CrossRefPubMedGoogle Scholar
  20. 20.
    Fadeel B (2004) Plasma membrane alterations during apoptosis: role in corpse clearance. Antioxid Redox Signal 6:269–275. doi: 10.1089/152308604322899332 CrossRefPubMedGoogle Scholar
  21. 21.
    Leffell MS, Spitznagel JK (1975) Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effects of immunoglobulin G subclasses and immune complexes coated on latex beads. Infect Immun 12:813–820PubMedPubMedCentralGoogle Scholar
  22. 22.
    Yeung T, Heit B, Dubuisson J-F et al (2009) Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. J Cell Biol 185:917–928. doi: 10.1083/jcb.200903020 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Flannagan RS, Harrison RE, Yip CM et al (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218. doi: 10.1083/jcb.201007056 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou D, Huang C, Lin Z et al (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26:192–197. doi: 10.1016/j.cellsig.2013.11.004 CrossRefPubMedGoogle Scholar
  25. 25.
    Vaux DL, Fidler F, Cumming G (2012) Replicates and repeats-what is the difference and is it significant? A brief discussion of statistics and experimental design. EMBO Rep 13:291–296. doi: 10.1038/embor.2012.36 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x CrossRefPubMedGoogle Scholar
  27. 27.
    Nayak BK, Hazra A (2011) How to choose the right statistical test? Indian J Ophthalmol 59:85–86. doi: 10.4103/0301-4738.77005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Amanda L. Evans
    • 1
  • Jack W. D. Blackburn
    • 1
  • Charles Yin
    • 1
  • Bryan Heit
    • 1
    Email author
  1. 1.Department of Microbiology and Immunology and the Centre for Human ImmunologyThe University of Western OntarioLondonCanada

Personalised recommendations