Skip to main content

Filamentous Bacteria as Targets to Study Phagocytosis

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1519))

Abstract

Filamentous targets are internalized via phagocytic cups that last for several minutes before closing to form a phagosome. This characteristic offers the possibility to study key events in phagocytosis with greater spatial and temporal resolution than is possible to achieve using spherical particles, for which the transition from a phagocytic cup to an enclosed phagosome occurs within a few seconds after particle attachment. In this chapter, we provide methodologies to prepare filamentous bacteria and describe how they can be used as targets to study different aspects of phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103(13):4930–4934. doi:10.1073/pnas.0600997103, PubMed PMID: 16549762, PubMed Central PMCID: PMC1458772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wright SD, Silverstein SC (1984) Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature 309(5966):359–361

    Article  CAS  PubMed  Google Scholar 

  3. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9(8):639–649. doi:10.1038/nrm2447, PubMed PMID: 18612320; PubMed Central PMCID: PMCPMC2851551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prashar A, Bhatia S, Gigliozzi D, Martin T, Duncan C, Guyard C et al (2013) Filamentous morphology of bacteria delays the timing of phagosome morphogenesis in macrophages. J Cell Biol 203(6):1081–1097. doi:10.1083/jcb.201304095, PubMed PMID: 24368810, PubMed Central PMCID: PMC3871431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26(1):244–249. doi:10.1007/s11095-008-9626-z, PubMed PMID: 18548338, PubMed Central PMCID: PMC2810499

    Article  CAS  PubMed  Google Scholar 

  6. Russell DG, Vanderven BC, Glennie S, Mwandumba H, Heyderman RS (2009) The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9(8):594–600. doi:10.1038/nri2591, PubMed PMID: 19590530, PubMed Central PMCID: PMC2776640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yates RM, Hermetter A, Russell DG (2005) The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6(5):413–420. doi:10.1111/j.1600-0854.2005.00284.x

    Article  CAS  PubMed  Google Scholar 

  8. Feucht A, Errington J (2005) ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. Microbiology 151(Pt 6):2053–2064. doi:10.1099/mic.0.27899-0

    Article  CAS  PubMed  Google Scholar 

  9. Harry E, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precison. Int Rev Cytol 253:27–94. doi:10.1016/S0074-7696(06)53002-5

    Article  CAS  PubMed  Google Scholar 

  10. Prashar A, Bhatia S, Tabatabaeiyazdi Z, Duncan C, Garduno RA, Tang P et al (2012) Mechanism of invasion of lung epithelial cells by filamentous Legionella pneumophila. Cell Microbiol 14(10):1632–1655. doi:10.1111/j.1462-5822.2012.01828.x

    Article  CAS  PubMed  Google Scholar 

  11. Bos J, Zhang Q, Vyawahare S, Rogers E, Rosenberg SM, Austin RH (2015) Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc Natl Acad Sci U S A 112(1):178–183. doi:10.1073/pnas.1420702111, PubMed PMID: 25492931, PubMed Central PMCID: PMC4291622

    Article  CAS  PubMed  Google Scholar 

  12. Steinberg BE, Grinstein S (2007) Assessment of phagosome formation and maturation by fluorescence microscopy. Methods Mol Biol 412:289–300. doi:10.1007/978-1-59745-467-4_19

    Article  CAS  PubMed  Google Scholar 

  13. Teruel MN, Blanpied TA, Shen K, Augustine GJ, Meyer T (1999) A versatile microporation technique for the transfection of cultured CNS neurons. J Neurosci Methods 93(1):37–48

    Article  CAS  PubMed  Google Scholar 

  14. Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K et al (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153(3):529–541, PubMed PMID: 11331304, PubMed Central PMCID: PMC2190578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee WL, Mason D, Schreiber AD, Grinstein S (2007) Quantitative analysis of membrane remodeling at the phagocytic cup. Mol Biol Cell 18(8):2883–2892. doi:10.1091/mbc.E06-05-0450, PubMed PMID: 17507658, PubMed Central PMCID: PMC1949373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moller J, Luehmann T, Hall H, Vogel V (2012) The race to the pole: how high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous Escherichia coli bacteria by macrophages. Nano Lett 12(6):2901–2905. doi:10.1021/nl3004896

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio R. Terebiznik Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Prashar, A., Khan, S.I.S., Terebiznik, M.R. (2017). Filamentous Bacteria as Targets to Study Phagocytosis. In: Botelho, R. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 1519. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6581-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6581-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6579-3

  • Online ISBN: 978-1-4939-6581-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics