Skip to main content

Next-Generation Sequencing Analysis of Long Noncoding RNAs in CD4+ T Cell Differentiation

  • Protocol
  • First Online:
T-Cell Differentiation

Abstract

Next-generation sequencing approaches, in particular RNA-seq, provide a genome-wide expression profiling allowing the identification of novel and rare transcripts such as long noncoding RNAs (lncRNA). Many RNA-seq studies have now been performed aimed at the characterization of lncRNAs and their possible involvement in cell development and differentiation in different organisms, cell types, and tissues. The adaptive immune system is an extraordinary context for the study of the role of lncRNAs in differentiation. Indeed lncRNAs seem to be key drivers in governing flexibility and plasticity of both CD8+ and CD4+ T cell, together with lineage-specific transcription factors and cytokines, acting as fine-tuners of fate choices in T cell differentiation.

We describe here a pipeline for the identification of lncRNAs starting from RNA-Seq raw data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307. doi:10.1038/nsmb.2480

    Article  CAS  PubMed  Google Scholar 

  2. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ranzani V, Rossetti G, Panzeri I et al (2015) The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol 16(3):318–325. doi:10.1038/ni.3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. doi:10.1038/ng.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ilott NE, Ponting CP (2013) Predicting long non-coding RNAs using RNA sequencing. Methods 63(1):50–59. doi:10.1016/j.ymeth.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  6. Pagani M, Rossetti G, Panzeri I et al (2013) Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation. Immunol Rev 253(1):82–96. doi:10.1111/imr.12055

    Article  PubMed  Google Scholar 

  7. Panzeri I, Rossetti G, Abrignani S, Pagani M (2015) Long intergenic non-coding RNAs: novel drivers of human lymphocyte differentiation. Front Immunol 6:175. doi:10.3389/fimmu.2015.00175

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet 30(4):121–123. doi:10.1016/j.tig.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  9. Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. doi:10.1038/ng1590

    Article  CAS  PubMed  Google Scholar 

  10. Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071. doi:10.1016/j.bbagen.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  11. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21. doi:10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  12. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. doi:10.1016/j.cell.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346. doi:10.1038/nature10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gloss BS, Dinger ME (2015) The specificity of long noncoding RNA expression. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2015.08.005

    PubMed  Google Scholar 

  16. Bonnal RJ, Ranzani V, Arrigoni A, Curti S, Panzeri I, Gruarin P et al (2015) De novo transcriptome profiling of highly purified human lymphocytes primary cells. Sci Data 2:150051. doi:10.1038/sdata.2015.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. doi:10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  19. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. doi:10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. doi:10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. doi:10.1038/nbt.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bateman A, Coin L, Durbin R et al (2004) The Pfam protein families database. Nucleic Acids Res 32(Database issue):D138–D141. doi:10.1093/nar/gkh121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang L, Park HJ, Dasari S et al (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41(6), e74. doi:10.1093/nar/gkt006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. doi:10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  25. Xie Y, Wu G, Tang J et al (2014) SOAPdenovo-trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30(12):1660–1666. doi:10.1093/bioinformatics/btu077

    Article  CAS  PubMed  Google Scholar 

  26. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guttman M, Garber M, Levin JZ et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510. doi:10.1038/nbt.1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun K, Chen X, Jiang P et al (2013) iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics 14(Suppl 2):S7. doi:10.1186/1471-2164-14-S2-S7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. doi:10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22(1):5–7. doi:10.1038/nsmb.2942

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raoul J. P. Bonnal or Massimiliano Pagani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ranzani, V. et al. (2017). Next-Generation Sequencing Analysis of Long Noncoding RNAs in CD4+ T Cell Differentiation. In: Lugli, E. (eds) T-Cell Differentiation. Methods in Molecular Biology, vol 1514. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6548-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6548-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6546-5

  • Online ISBN: 978-1-4939-6548-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics