Skip to main content

Measuring Telomerase Activity in Senescent Human T Cells Upon Genetic Modification

  • Protocol
  • First Online:
T-Cell Differentiation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1514))

  • 6221 Accesses

Abstract

Telomerase, a RNA-dependent DNA polymerase that adds telomeric DNA at the 3′ ends of eukaryotic chromosomes, is essential for the lifelong preservation of the proliferative potential of antigen specific T lymphocytes. However, senescent T cells that have low telomerase activity, short telomeres and lack of replicative capacity accumulate in old humans, patients with chronic viral infections and cancer. The mechanisms inhibiting telomerase in these cells are poorly understood. Here I describe a strategy that was successfully applied to identify pathways causing telomerase dysfunction in primary human senescent T lymphocytes. Such strategy couples lentiviral vector-based gene manipulations to functional and signaling readouts directly ex vivo, in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackburn EH (2000) The end of the (DNA) line. Nat Struct Biol 7(10):847–850. doi:10.1038/79594

    Article  CAS  PubMed  Google Scholar 

  2. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6(8):611–622. doi:10.1038/nrg1656

    Article  CAS  PubMed  Google Scholar 

  3. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740. doi:10.1038/nrm2233

    Article  CAS  PubMed  Google Scholar 

  4. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413

    Article  CAS  PubMed  Google Scholar 

  5. Verdun RE, Karlseder J (2007) Replication and protection of telomeres. Nature 447(7147):924–931. doi:10.1038/nature05976

    Article  CAS  PubMed  Google Scholar 

  6. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  7. Hodes RJ, Hathcock KS, Weng NP (2002) Telomeres in T and B cells. Nat Rev Immunol 2(9):699–706. doi:10.1038/nri890

    Article  CAS  PubMed  Google Scholar 

  8. Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66(3):407–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tesmer VM, Ford LP, Holt SE et al (1999) Two inactive fragments of the integral RNA cooperate to assemble active telomerase with the human protein catalytic subunit (hTERT) in vitro. Mol Cell Biol 19(9):6207–6216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kyo S, Takakura M, Fujiwara T, Inoue M (2008) Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 99(8):1528–1538. doi:10.1111/j.1349-7006.2008.00878.x

    Article  CAS  PubMed  Google Scholar 

  11. DePinho RA, Schreiber-Agus N, Alt FW (1991) myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res 57:1–46

    Article  CAS  PubMed  Google Scholar 

  12. Akiyama M, Hideshima T, Hayashi T et al (2003) Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 63(1):18–21

    CAS  PubMed  Google Scholar 

  13. Crowe DL, Nguyen DC, Tsang KJ, Kyo S (2001) E2F-1 represses transcription of the human telomerase reverse transcriptase gene. Nucleic Acids Res 29(13):2789–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu D, Wang Q, Gruber A et al (2000) Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19(45):5123–5133. doi:10.1038/sj.onc.1203890

    Article  CAS  PubMed  Google Scholar 

  15. Liu K, Hodes RJ, Weng N (2001) Cutting edge: telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J Immunol 166(8):4826–4830

    Article  CAS  PubMed  Google Scholar 

  16. Kang SS, Kwon T, Kwon DY, Do SI (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274(19):13085–13090

    Article  CAS  PubMed  Google Scholar 

  17. Henson SM, Franzese O, Macaulay R et al (2009) KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113(26):6619–6628. doi:10.1182/blood-2009-01-199588

    Article  CAS  PubMed  Google Scholar 

  18. Plunkett FJ, Franzese O, Finney HM et al (2007) The loss of telomerase activity in highly differentiated CD8 + CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178(12):7710–7719

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Zhao LL, Funder JW, Liu JP (1997) Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 272(27):16729–16732

    Article  CAS  PubMed  Google Scholar 

  20. Di Mitri D, Azevedo RI, Henson SM et al (2011) Reversible senescence in human CD4 + CD45RA + CD27- memory T cells. J Immunol 187(5):2093–2100. doi:10.4049/jimmunol.1100978

    Article  PubMed  Google Scholar 

  21. Lanna A, Coutavas E, Levati L et al (2013) IFN-alpha inhibits telomerase in human CD8(+) T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol 191(7):3744–3752. doi:10.4049/jimmunol.1301409

    Article  CAS  PubMed  Google Scholar 

  22. Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15(10):965–972. doi:10.1038/ni.2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Escors D, Lopes L, Lin R et al (2008) Targeting dendritic cell signaling to regulate the response to immunization. Blood 111(6):3050–3061. doi:10.1182/blood-2007-11-122408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Profs Arne Akbar and Mala Maini for mentorship. I serve as Sir Henry Wellcome Trust Fellow under the sponsorship of Prof. Michael L Dustin (University of Oxford).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Lanna Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lanna, A. (2017). Measuring Telomerase Activity in Senescent Human T Cells Upon Genetic Modification. In: Lugli, E. (eds) T-Cell Differentiation. Methods in Molecular Biology, vol 1514. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6548-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6548-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6546-5

  • Online ISBN: 978-1-4939-6548-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics