Cohesin and Condensin pp 197-216

Part of the Methods in Molecular Biology book series (MIMB, volume 1515) | Cite as

Analysis of Cohesin Function in Gene Regulation and Chromatin Organization in Interphase

  • Preksha Gupta
  • Thais Lavagnolli
  • Hegias Mira-Bontenbal
  • Matthias Merkenschlager
Protocol

Abstract

Cohesin is essential for the maintenance of chromosomes through the cell cycle. In addition, cohesin contributes to the regulation of gene expression and the organization of chromatin in interphase cells. To study cohesin’s role in gene expression and chromatin organization, it is necessary to avoid secondary effects due to disruption of vital cohesin functions in the cell cycle. Here we describe experimental approaches to achieve this and the methods applied to define cohesin’s role in interphase.

Key words

Cohesin Gene expression Conditional knockout Quantitative real-time PCR (qRT-PCR) Quantitative Western blot Chromatin immunoprecipitation (ChIP) Chromosome conformation capture (3C) 

References

  1. 1.
    Aragon L, Martinez-Perez E, Merkenschlager M (2013) Condensin, cohesin and the control of chromatin states. Curr Opin Genet Dev 23:204–211. doi:10.1016/j.gde.2012.11.004 CrossRefPubMedGoogle Scholar
  2. 2.
    Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648. doi:10.1146/annurev.biochem.74.082803.133219 CrossRefPubMedGoogle Scholar
  3. 3.
    Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sumara I, Vorlaufer E, Gieffers C et al (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762. doi:10.1083/jcb.151.4.749 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gerlich D, Koch B, Dupeux F et al (2006) Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr Biol 16:1571–1578. doi:10.1016/j.cub.2006.06.068 CrossRefPubMedGoogle Scholar
  6. 6.
    Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801. doi:10.1038/nature06634 CrossRefPubMedGoogle Scholar
  7. 7.
    Merkenschlager M, Odom DT (2013) CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152:1285–1297. doi:10.1016/j.cell.2013.02.029 CrossRefPubMedGoogle Scholar
  8. 8.
    Heidinger-Pauli JM, Mert O, Davenport C et al (2010) Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol 20:957–963. doi:10.1016/j.cub.2010.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schaaf C, Misulovin Z, Sahota G et al (2009) Regulation of the Drosophila enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins. PLoS One 4, e6202. doi:10.1371/journal.pone.0006202 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Deardorff M, Bando M, Nakato R et al (2012) HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489:313–317. doi:10.1038/nature11316 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu J, Krantz ID (2009) Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet 76:303–314. doi:10.1111/j.1399-0004.2009.01271.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Krantz ID, McCallum J, DeScipio C et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635. doi:10.1038/ng1364 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ball AR, Chen Y-Y, Yokomori K (2014) Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies. Biochim Biophys Acta 1839:191–202. doi:10.1016/j.bbagrm.2013.11.002 CrossRefPubMedGoogle Scholar
  14. 14.
    Skibbens RV, Colquhoun JM, Green MJ et al (2013) Cohesinopathies of a feather flock together. PLoS Genet 9, e1004036. doi:10.1371/journal.pgen.1004036 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu J, Zhang Z, Bando M et al (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol 7, e1000119. doi:10.1371/journal.pbio.1000119 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kawauchi S, Calof AL, Santos R et al (2009) Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/−) mouse, a model of Cornelia de Lange syndrome. PLoS Genet 5, e1000650. doi:10.1371/journal.pgen.1000650 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Seitan VC, Hao B, Tachibana-Konwalski K et al (2011) A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 476:467–471. doi:10.1038/nature10312 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433. doi:10.1016/j.cell.2008.01.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Pauli A, van Bemmel JG, Oliveira RA et al (2010) A direct role for cohesin in gene regulation and ecdysone response in Drosophila salivary glands. Curr Biol 20:1787–1798. doi:10.1016/j.cub.2010.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kagey MH, Newman JJ, Bilodeau S et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435. doi:10.1038/nature09380 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ding L, Paszkowski-Rogacz M, Nitzsche A et al (2009) A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 4:403–415. doi:10.1016/j.stem.2009.03.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Nitzsche A, Paszkowski-Rogacz M, Matarese F et al (2011) RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity. PLoS One 6, e19470. doi:10.1371/journal.pone.0019470 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hu G, Kim J, Xu Q et al (2009) A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 23:837–848. doi:10.1101/gad.1769609.Freely CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lavagnolli T, Gupta P, Hörmanseder E et al (2015) Initiation and maintenance of pluripotency gene expression in the absence of cohesin. Genes Dev 29:23–38. doi:10.1101/gad.251835.114 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lin T, Chao C, Saito S et al (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171. doi:10.1038/ncb1211 CrossRefPubMedGoogle Scholar
  27. 27.
    Maimets T, Neganova I, Armstrong L, Lako M (2008) Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene 27:5277–5287. doi:10.1038/onc.2008.166 CrossRefPubMedGoogle Scholar
  28. 28.
    Li M, He Y, Dubois W et al (2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 46:30–42. doi:10.1016/j.molcel.2012.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schuldiner O, Berdnik D, Levy JM et al (2008) piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 14:227–238. doi:10.1016/j.devcel.2007.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sofueva S, Yaffe E, Chan W-C et al (2013) Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J 32:1–11. doi:10.1038/emboj.2013.237 CrossRefGoogle Scholar
  31. 31.
    Seitan VC, Faure AJ, Zhan Y et al (2013) Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res 23:2066–2077. doi:10.1101/gr.161620.113 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ing-simmons E, Seitan VC, Faure AJ et al (2015) Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res 25(4):504–513. doi:10.1101/gr.184986.114.8 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tedeschi A, Wutz G, Huet S et al (2013) Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501:564–568. doi:10.1038/nature12471 CrossRefPubMedGoogle Scholar
  34. 34.
    Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55. doi:10.1038/nrm1546 CrossRefPubMedGoogle Scholar
  35. 35.
    Dekker J, Marti-Renom M, Mirny L (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. doi:10.1038/nrg3454 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Creyghton MP, Cheng AW, Welstead GG et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936. doi:10.1073/pnas.1016071107 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rada-Iglesias A, Bajpai R, Swigut T et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283. doi:10.1038/nature09692 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Preksha Gupta
    • 1
  • Thais Lavagnolli
    • 1
  • Hegias Mira-Bontenbal
    • 1
    • 2
  • Matthias Merkenschlager
    • 1
  1. 1.Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of MedicineImperial College LondonLondonUK
  2. 2.Department of Developmental Biology, Erasmus MCUniversity Medical CentreRotterdamThe Netherlands

Personalised recommendations