Skip to main content

Encapsulation of the HDACi Ex527 into Liposomes and Polymer-Based Particles

  • 1871 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 1510)

Abstract

Incorporation of drugs into particles can improve their therapeutic effectiveness. Solubility, half-life time, targeting, and the release of the drug can be modified by the encapsulation into a particle. Histone deacetylase inhibitors have a great potential to be used as therapeutics for many different diseases. In this chapter, we describe the inclusion of the low molar mass HDACi Ex527 into polymer-based particles and liposomes.

Key words

  • Histone deacetylase inhibitor
  • Ex527
  • PLGA
  • Acetalated dextran
  • Liposomes
  • Cellular uptake

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6527-4_29
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6527-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Slingerland M, Guchelaar HJ, Gelderblom H (2014) Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs 25(2):140–149. doi:10.1097/CAD.0000000000000040

    CAS  CrossRef  PubMed  Google Scholar 

  2. Zhang L, Han Y, Jiang Q, Wang C, Chen X, Li X, Xu F, Jiang Y, Wang Q, Xu W (2015) Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med Res Rev 35(1):63–84. doi:10.1002/med.21320

    CrossRef  PubMed  Google Scholar 

  3. Schotterl S, Brennenstuhl H, Naumann U (2015) Modulation of immune responses by histone deacetylase inhibitors. Crit Rev Oncog 20(1–2):139–154

    CrossRef  PubMed  Google Scholar 

  4. Suliman BA, Xu D, Williams BR (2012) HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunol Cell Biol 90(1):23–32. doi:10.1038/icb.2011.92

    CAS  CrossRef  PubMed  Google Scholar 

  5. Hahnen E, Hauke J, Trankle C, Eyupoglu IY, Wirth B, Blumcke I (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17(2):169–184. doi:10.1517/13543784.17.2.169

    CAS  CrossRef  PubMed  Google Scholar 

  6. Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16(10):669–694

    CrossRef  PubMed  Google Scholar 

  7. Lim SB, Banerjee A, Onyuksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163(1):34–45. doi:10.1016/j.jconrel.2012.06.002

    CAS  CrossRef  PubMed  Google Scholar 

  8. Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651. doi:10.1007/s12010-011-9383-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41(7):2539–2544. doi:10.1039/c2cs15294k

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141. doi:10.1016/j.jsps.2011.04.001

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R (2005) Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 48(25):8045–8054. doi:10.1021/jm050522v

    CAS  CrossRef  PubMed  Google Scholar 

  12. Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, Wei SR, Pollio G, Magnoni L, Scali C, Massai L, Franceschini D, Camarri M, Gianfriddo M, Diodato E, Thomas R, Gokce O, Tabrizi SJ, Caricasole A, Landwehrmeyer B, Menalled L, Murphy C, Ramboz S, Luthi-Carter R, Westerberg G, Marsh JL (2014) A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet 23(11):2995–3007. doi:10.1093/hmg/ddu010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JM (2009) Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci U S A 106(14):5497–5502. doi:10.1073/pnas.0901592106

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522. doi:10.1016/j.jconrel.2012.01.043

    CAS  CrossRef  PubMed  Google Scholar 

  15. Kauffman KJ, Do C, Sharma S, Gallovic MD, Bachelder EM, Ainslie KM (2012) Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl Mater Interfaces 4(8):4149–4155. doi:10.1021/am3008888

    CAS  CrossRef  PubMed  Google Scholar 

  16. Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JM (2008) Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc 130(32):10494–10495. doi:10.1021/ja803947s

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159

    CAS  CrossRef  PubMed  Google Scholar 

  18. Ginter T, Heinzel T, Krämer OH (2013) Acetylation of endogenous STAT proteins. Methods Mol Biol 967:167–178. doi:10.1007/978-1-62703-242-1_12

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Thuringian Ministry of Education, Science and Culture (#B514-09051) within the ProExcellence initiative “NanoConSens.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Imhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hennig, D., Imhof, D. (2017). Encapsulation of the HDACi Ex527 into Liposomes and Polymer-Based Particles. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols