Advertisement

Encapsulation of the HDACi Ex527 into Liposomes and Polymer-Based Particles

  • Dorle Hennig
  • Diana ImhofEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1510)

Abstract

Incorporation of drugs into particles can improve their therapeutic effectiveness. Solubility, half-life time, targeting, and the release of the drug can be modified by the encapsulation into a particle. Histone deacetylase inhibitors have a great potential to be used as therapeutics for many different diseases. In this chapter, we describe the inclusion of the low molar mass HDACi Ex527 into polymer-based particles and liposomes.

Key words

Histone deacetylase inhibitor Ex527 PLGA Acetalated dextran Liposomes Cellular uptake 

Notes

Acknowledgements

The authors acknowledge financial support by the Thuringian Ministry of Education, Science and Culture (#B514-09051) within the ProExcellence initiative “NanoConSens.”

References

  1. 1.
    Slingerland M, Guchelaar HJ, Gelderblom H (2014) Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs 25(2):140–149. doi: 10.1097/CAD.0000000000000040 CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang L, Han Y, Jiang Q, Wang C, Chen X, Li X, Xu F, Jiang Y, Wang Q, Xu W (2015) Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med Res Rev 35(1):63–84. doi: 10.1002/med.21320 CrossRefPubMedGoogle Scholar
  3. 3.
    Schotterl S, Brennenstuhl H, Naumann U (2015) Modulation of immune responses by histone deacetylase inhibitors. Crit Rev Oncog 20(1–2):139–154CrossRefPubMedGoogle Scholar
  4. 4.
    Suliman BA, Xu D, Williams BR (2012) HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunol Cell Biol 90(1):23–32. doi: 10.1038/icb.2011.92 CrossRefPubMedGoogle Scholar
  5. 5.
    Hahnen E, Hauke J, Trankle C, Eyupoglu IY, Wirth B, Blumcke I (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17(2):169–184. doi: 10.1517/13543784.17.2.169 CrossRefPubMedGoogle Scholar
  6. 6.
    Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16(10):669–694CrossRefPubMedGoogle Scholar
  7. 7.
    Lim SB, Banerjee A, Onyuksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163(1):34–45. doi: 10.1016/j.jconrel.2012.06.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651. doi: 10.1007/s12010-011-9383-z CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41(7):2539–2544. doi: 10.1039/c2cs15294k CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141. doi: 10.1016/j.jsps.2011.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R (2005) Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 48(25):8045–8054. doi: 10.1021/jm050522v CrossRefPubMedGoogle Scholar
  12. 12.
    Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, Wei SR, Pollio G, Magnoni L, Scali C, Massai L, Franceschini D, Camarri M, Gianfriddo M, Diodato E, Thomas R, Gokce O, Tabrizi SJ, Caricasole A, Landwehrmeyer B, Menalled L, Murphy C, Ramboz S, Luthi-Carter R, Westerberg G, Marsh JL (2014) A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet 23(11):2995–3007. doi: 10.1093/hmg/ddu010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JM (2009) Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci U S A 106(14):5497–5502. doi: 10.1073/pnas.0901592106 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522. doi: 10.1016/j.jconrel.2012.01.043 CrossRefPubMedGoogle Scholar
  15. 15.
    Kauffman KJ, Do C, Sharma S, Gallovic MD, Bachelder EM, Ainslie KM (2012) Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl Mater Interfaces 4(8):4149–4155. doi: 10.1021/am3008888 CrossRefPubMedGoogle Scholar
  16. 16.
    Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JM (2008) Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc 130(32):10494–10495. doi: 10.1021/ja803947s CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159CrossRefPubMedGoogle Scholar
  18. 18.
    Ginter T, Heinzel T, Krämer OH (2013) Acetylation of endogenous STAT proteins. Methods Mol Biol 967:167–178. doi: 10.1007/978-1-62703-242-1_12 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute for Molecular Medicine, Cancer and Inflammation ResearchUniversity of Southern DenmarkOdense CDenmark
  2. 2.Pharmaceutical Chemistry I, Institute of PharmacyRheinische Friedrich Wilhelms UniversityBonnGermany

Personalised recommendations