Skip to main content

Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

  • 2078 Accesses

Abstract

The family of seven-in-absentia (SIAH) ubiquitin E3 ligases functions in the control of numerous key signaling pathways. These enzymes belong to the RING (really interesting new gene) group of E3 ligases and mediate the attachment of ubiquitin chains to substrates, which then leads to their proteasomal degradation. Here, we describe a protocol that allows measuring SIAH-mediated ubiquitination and degradation of its client proteins as exemplified by acetyl transferases using simple overexpression experiments. The impact of SIAH expression on the relative amounts of target proteins and their mRNAs can be quantified by Western blotting and quantitative PCR (qPCR) as described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmitz ML, Grishina I (2012) Regulation of the tumor suppressor PML by sequential post-translational modifications. Front Oncol 2:204

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they’re apart. Science 326:1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lorenz S, Cantor AJ, Rape M, Kuriyan J (2013) Macromolecular juggling by ubiquitylation enzymes. BMC Biol 11:65

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walczak H, Iwai K, Dikic I (2012) Generation and physiological roles of linear ubiquitin chains. BMC Biol 10:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lauwers E, Jacob C, Andre B (2009) K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol 185:493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kleiger G, Mayor T (2014) Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol 24:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458:438–444

    Article  CAS  PubMed  Google Scholar 

  8. Lill JR, Wertz IE (2014) Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol Sci 35:187–207

    Article  CAS  PubMed  Google Scholar 

  9. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  CAS  PubMed  Google Scholar 

  10. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20:1242–1253

    Article  CAS  PubMed  Google Scholar 

  11. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  12. Budhidarmo R, Nakatani Y, Day CL (2012) RINGs hold the key to ubiquitin transfer. Trends Biochem Sci 37:58–65

    Article  CAS  PubMed  Google Scholar 

  13. House CM, Moller A, Bowtell DD (2009) Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res 69:8835–8838

    Article  PubMed  Google Scholar 

  14. Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK (2013) SIAH proteins: critical roles in leukemogenesis. Leukemia 27:792–802

    Article  PubMed  Google Scholar 

  15. Qi J, Kim H, Scortegagna M, Ronai ZA (2013) Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 67:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML (2009) An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol 11:85–91

    Article  CAS  PubMed  Google Scholar 

  17. Grishina I, Debus K, Garcia-Limones C, Schneider C, Shresta A, Garcia C, Calzado MA, Schmitz ML (2012) SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation. Biochim Biophys Acta 1823:2287–2296

    Article  CAS  PubMed  Google Scholar 

  18. Khurana A, Nakayama K, Williams S, Davis RJ, Mustelin T, Ronai Z (2006) Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J Biol Chem 281:35316–35326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N (2007) A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 26:6665–6676

    Article  CAS  PubMed  Google Scholar 

  20. Famulski JK, Trivedi N, Howell D, Yang Y, Tong Y, Gilbertson R, Solecki DJ (2010) Siah regulation of Pard3A controls neuronal cell adhesion during germinal zone exit. Science 330:1834–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel T (2008) Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 22:1369–1379

    Article  PubMed  Google Scholar 

  22. Moller A, House CM, Wong CS, Scanlon DB, Liu MC, Ronai Z, Bowtell DD (2009) Inhibition of Siah ubiquitin ligase function. Oncogene 28:289–296

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama K, Gazdoiu S, Abraham R, Pan ZQ, Ronai Z (2007) Hypoxia-induced assembly of prolyl hydroxylase PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2. Biochem J 401:217–226

    Article  CAS  PubMed  Google Scholar 

  24. Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29:569–574

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work from M.L.S. is supported by grants from the Deutsche Forschungsgemeinschaft (SFB 1213) and Deutsche Krebshilfe (111447). The work of M.K. is supported from the Deutsche Forschungsgemeinschaft (Kr1143/5-3 and Kr1143/7-3). Both laboratories are further supported by SFB/TRR81, SFB1021, and the Excellence Cluster Cardio-Pulmonary System (ECCPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lienhard Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hagenbucher, J., Stekman, H., Rodriguez-Gil, A., Kracht, M., Schmitz, M.L. (2017). Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics