Skip to main content

Studying the Role of the Mitotic Exit Network in Cytokinesis

  • Protocol
  • First Online:
The Mitotic Exit Network

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1505))

Abstract

In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bi E, Maddox P, Lew DJ, Salmon ED, McMillan JN, Yeh E, Pringle JR (1998) Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 142(5):1301–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lippincott J, Li R (1998) Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 140(2):355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wloka C, Vallen EA, The L, Fang X, Oh Y, Bi E (2013) Immobile myosin-II plays a scaffolding role during cytokinesis in budding yeast. J Cell Biol 200(3):271–286. doi:10.1083/jcb.201208030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boyne JR, Yosuf HM, Bieganowski P, Brenner C, Price C (2000) Yeast myosin light chain, Mlc1p, interacts with both IQGAP and class II myosin to effect cytokinesis. J Cell Sci 113(Pt 24):4533–4543

    CAS  PubMed  Google Scholar 

  5. Tolliday N, Bouquin N, Li R (2001) Assembly and regulation of the cytokinetic apparatus in budding yeast. Curr Opin Microbiol 4(6):690–695

    Article  CAS  PubMed  Google Scholar 

  6. Balasubramanian MK, Bi E, Glotzer M (2004) Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr Biol 14(18):R806–R818

    Article  CAS  PubMed  Google Scholar 

  7. Pollard TD (2010) Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22(1):50–56, doi:S0955-0674(09)00216-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Meitinger F, Boehm ME, Hofmann A, Hub B, Zentgraf H, Lehmann WD, Pereira G (2011) Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis. Genes Dev 25(8):875–888. doi:10.1101/gad.622411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh Y, Schreiter J, Nishihama R, Wloka C, Bi E (2013) Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle. Mol Biol Cell 24(9):1305–1320. doi:10.1091/mbc.E12-11-0804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanchez-Diaz A, Marchesi V, Murray S, Jones R, Pereira G, Edmondson R, Allen T, Labib K (2008) Inn1 couples contraction of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nat Cell Biol 10(4):395–406. doi:10.1038/ncb1701

    Article  CAS  PubMed  Google Scholar 

  11. Nishihama R, Schreiter JH, Onishi M, Vallen EA, Hanna J, Moravcevic K, Lippincott MF, Han H, Lemmon MA, Pringle JR, Bi E (2009) Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. J Cell Biol 185(6):995–1012, doi:jcb.200903125 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jendretzki A, Ciklic I, Rodicio R, Schmitz HP, Heinisch JJ (2009) Cyk3 acts in actomyosin ring independent cytokinesis by recruiting Inn1 to the yeast bud neck. Mol Genet Genomics 282(4):437–451. doi:10.1007/s00438-009-0476-0

    Article  CAS  PubMed  Google Scholar 

  13. Palani S, Meitinger F, Boehm ME, Lehmann WD, Pereira G (2012) Cdc14-dependent dephosphorylation of Inn1 contributes to Inn1-Cyk3 complex formation. J Cell Sci 125(Pt 13):3091–3096. doi:10.1242/jcs.106021

    Article  CAS  PubMed  Google Scholar 

  14. Nkosi PJ, Targosz BS, Labib K, Sanchez-Diaz A (2013) Hof1 and Rvs167 have redundant roles in actomyosin ring function during cytokinesis in budding yeast. PLoS One 8(2), e57846. doi:10.1371/journal.pone.0057846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135(3):597–610

    Article  CAS  PubMed  Google Scholar 

  16. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. VerPlank L, Li R (2005) Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis. Mol Biol Cell 16(5):2529–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roncero C, Sanchez Y (2010) Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 27(8):521–530. doi:10.1002/yea.1779

    Article  CAS  PubMed  Google Scholar 

  19. Ghiara JB, Richardson HE, Sugimoto K, Henze M, Lew DJ, Wittenberg C, Reed SI (1991) A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65(1):163–174

    Article  CAS  PubMed  Google Scholar 

  20. Lew DJ, Reed SI (1993) Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol 120(6):1305–1320

    Article  CAS  PubMed  Google Scholar 

  21. Dahmann C, Diffley JF, Nasmyth KA (1995) S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5(11):1257–1269, doi:S0960-9822(95)00252-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74(6):993–1007, doi:0092-8674(93)90722-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, Byers B, Futcher B (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3(7):805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padmashree CG, Surana U (2001) Cdc28-Clb mitotic kinase negatively regulates bud site assembly in the budding yeast. J Cell Sci 114(Pt 1):207–218

    CAS  PubMed  Google Scholar 

  25. Bardin AJ, Amon A (2001) Men and sin: what’s the difference? Nat Rev Mol Cell Biol 2(11):815–826. doi:10.1038/35099020

    Article  CAS  PubMed  Google Scholar 

  26. Queralt E, Uhlmann F (2008) Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 20(6):661–668. doi:10.1016/j.ceb.2008.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meitinger F, Palani S, Pereira G (2012) The power of MEN in cytokinesis. Cell Cycle 11(2):219–228. doi:10.4161/cc.11.2.18857

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Cross F (2009) Mitotic exit in the absence of separase activity. Mol Biol Cell 20(5):1576–1591. doi:10.1091/mbc.E08-10-1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohl DA, Huddleston MJ, Collingwood TS, Annan RS, Deshaies RJ (2009) Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. J Cell Biol 184(4):527–539. doi:10.1083/jcb.200812022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller DP, Hall H, Chaparian R, Mara M, Mueller A, Hall MC, Shannon KB (2015) Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol Biol Cell 26(16):2913–2926. doi:10.1091/mbc.E14-12-1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F (2015) Identification of Cdk targets that control cytokinesis. EMBO J 34(1):81–96. doi:10.15252/embj.201488958

    Article  CAS  PubMed  Google Scholar 

  32. Vallen EA, Caviston J, Bi E (2000) Roles of Hof1p, Bni1p, Bnr1p, and myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 11(2):593–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blondel M, Bach S, Bamps S, Dobbelaere J, Wiget P, Longaretti C, Barral Y, Meijer L, Peter M (2005) Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J 24(7):1440–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Diaz A, Nkosi PJ, Murray S, Labib K (2012) The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth. EMBO J 31(17):3620–3634. doi:10.1038/emboj.2012.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foltman M, Molist I, Sanchez-Diaz A (2016) Synchronization of the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 1369:279–291. doi:10.1007/978-1-4939-3145-3_19

    Article  PubMed  Google Scholar 

  36. Noton EA, Diffley JFX (2000) CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol Cell 5:85–95

    Article  CAS  PubMed  Google Scholar 

  37. Liku ME, Nguyen VQ, Rosales AW, Irie K, Li JJ (2005) CDK phosphorylation of a novel NLS-NES module distributed between two subunits of the Mcm2-7 complex prevents chromosomal rereplication. Mol Biol Cell 16(10):5026–5039. doi:10.1091/mbc.E05-05-0412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jaspersen SL, Morgan DO (2000) Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol 10(10):615–618

    Article  CAS  PubMed  Google Scholar 

  39. Hwa Lim H, Yeong FM, Surana U (2003) Inactivation of mitotic kinase triggers translocation of MEN components to mother-daughter neck in yeast. Mol Biol Cell 14(11):4734–4743. doi:10.1091/mbc.E03-04-0238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konig C, Maekawa H, Schiebel E (2010) Mutual regulation of cyclin-dependent kinase and the mitotic exit network. J Cell Biol 188(3):351–368. doi:10.1083/jcb.200911128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simanis V (2003) Events at the end of mitosis in the budding and fission yeasts. J Cell Sci 116(Pt 21):4263–4275. doi:10.1242/jcs.00807

    Article  CAS  PubMed  Google Scholar 

  42. Wolfe BA, Gould KL (2005) Split decisions: coordinating cytokinesis in yeast. Trends Cell Biol 15(1):10–18, doi:S0962-8924(04)00317-4 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Karim Labib for his teaching and scientific advice. ASD is a recipient of a Ramon y Cajal contract and received funding from the Cantabria International Campus and via grant BFU2014-58081-P from the Spanish “Ministerio de Economia y Competitividad” (cofunded by the European Regional Development Fund). MF is a recipient of fellowship Juan de la Cierva (FPDI-2013-17778) from the Spanish “Ministerio de Economia y Competitividad.” We are grateful to EMBO Journal for allowing us to reproduce in Fig. 2 elements from Supplementary Fig. 1 in ref. [34].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Sanchez-Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Foltman, M., Sanchez-Diaz, A. (2017). Studying the Role of the Mitotic Exit Network in Cytokinesis. In: Monje-Casas, F., Queralt, E. (eds) The Mitotic Exit Network. Methods in Molecular Biology, vol 1505. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6502-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6502-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6500-7

  • Online ISBN: 978-1-4939-6502-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics