Skip to main content

Cytochrome c Stabilization and Immobilization in Aerogels

  • Protocol
  • First Online:
Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1504))

Abstract

Sol–gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface area with high porosity. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality to the ultraporous scaffold. Incorporating biomolecules into aerogels, other than such rugged species as lipases or cellulose, has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid (SCF) processing. However, the heme protein cytochrome c (cyt.c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated into wet gels as the sol undergoes gelation. The guest–host wet gel can then be processed to form composite aerogels in which cyt.c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au~cyt.c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the bioaerogel matrix, as facilitated by the high-quality pore structure of the aerogel, while remaining viable for weeks at room temperature. More recently, careful control of synthetic parameters (e.g., buffer concentration, protein concentration, SCF extraction rate) have allowed for the preparation of cyt.c–silica aerogels, sans nucleating nanoparticles; these bioaerogels also exhibit rapid gas-phase sensing while retaining protein structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hitihami-Mudiyanselage A, Senevirathne K, Brock SL (2013) Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels. ACS Nano 7:1163–1170

    Article  CAS  PubMed  Google Scholar 

  2. Fricke J (1986) Aerogels. Springer, Berlin

    Book  Google Scholar 

  3. Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45

    Google Scholar 

  4. Aegerter AM, Leventis N, Koebel MM (eds) (2011) Aerogels handbook. Springer, New York, NY

    Google Scholar 

  5. Leventis N, Elder IA, Anderson ML, Rolison DR, Merzbacher CI (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. Sensing oxygen near the speed of open-air diffusion. Chem Mater 11:2837–2845

    Article  CAS  Google Scholar 

  6. Plata DL, Briones YJ, Wolfe RL, Carroll MK, Bakrania SD, Mandel SG, Anderson AM (2004) Aerogel-platform optical sensors for oxygen gas. J Non Cryst Solids 350:326–335

    Article  CAS  Google Scholar 

  7. Rolison DR, Pietron JJ, Long JW (2009) Controlling the sensitivity, specificity, and time signature of sensors through architectural design on the nanoscale. ECS Transactions 19:171–179

    Article  CAS  Google Scholar 

  8. Carroll MK, Anderson AM (2011) Aerogels as platforms for chemical sensors. In: Aegerter AM, Leventis N, Koebel MM (eds) Aerogels handbook, Springer. New York, NY, pp 637–650

    Chapter  Google Scholar 

  9. Rolison DR (2003) Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 299:1698–1701

    Google Scholar 

  10. Pietron JJ, Stroud RM, Rolison DR (2002) Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett 2:545–549

    Article  CAS  Google Scholar 

  11. Anderson ML, Morris CA, Stroud RM, Merzbacher CI, Rolison DR (1999) Colloidal gold aerogels: preparation, properties, and characterization. Langmuir 15:674–681

    Article  CAS  Google Scholar 

  12. Anderson ML, Stroud RM, Rolison DR (2002) Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon–silica composite aerogels. Nano Lett 2:235–240, correction: (2003) Nano Letters 3, 1321

    Article  CAS  Google Scholar 

  13. Chervin CN, Ko JS, Miller BW, Dudek L, Mansour AN, Donakowski MD, Brintlinger T, Gogotsi P, Chattopadhyay S, Shibata T, Parker JF, Hahn BP, Rolison DR, Long JW (2015) Defective by design: vanadium-substituted iron oxide nanoarchitectures as cation-insertion hosts for electrochemical charge storage. J Mater Chem A 3:12059–12068

    Article  CAS  Google Scholar 

  14. Maury S, Buisson P, Pierre AC (2001) Porous texture modification of silica aerogels in liquid media and its effect on the activity of a lipase. Langmuir 17:6443–6446

    Article  CAS  Google Scholar 

  15. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  16. Harper-Leatherman AS, Wallace JM, Long JW, Rhodes CP, Pettigrew KA, Graffam ME, Abunar BH, Iftikhar M, Ndoi A, Capecelatro AN, Rolison DR (2016) Redox cycling within nanoparticle-nucleated self-organized protein superstructures: Electron transfer between gold nanoparticle cores, tannic acid, and cytochrome c. Manuscript in preparation

    Google Scholar 

  17. Wallace JM, Rice JK, Pietron JJ, Stroud RM, Long JW, Rolison DR (2003) Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity. Nano Lett 3:1463–1467

    Article  CAS  Google Scholar 

  18. Wallace JM, Dening BM, Eden KB, Stroud RM, Long JW, Rolison DR (2004) Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. Langmuir 20:9276–9281

    Article  CAS  PubMed  Google Scholar 

  19. Wallace JM, Stroud RM, Pietron JJ, Long JW, Rolison DR (2004) The effect of particle size and protein content on nanoparticle-gold–nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. J Non Cryst Solids 350:31–38

    Article  CAS  Google Scholar 

  20. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity: a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Article  PubMed  Google Scholar 

  21. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Del Pino P, Pelaz B, Zhang Q, Maffree P, Ninehaus U, Parak WJ (2014) Protein corona formation around nanoparticles—from the past to the future. Mater Horizon 1:301–313

    Google Scholar 

  23. Mahmoudi M, Lynch I, Ejtehadi R, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  CAS  PubMed  Google Scholar 

  24. Harper-Leatherman AS, Iftikhar M, Ndoi A, Scappaticci SJ, Lisi GP, Buzard KL, Garvey EM (2012) Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity. Langmuir 28:14756–14765

    Article  CAS  PubMed  Google Scholar 

  25. Harper-Leatherman AS, Pacer ER, Kosciuszek ND (2016) Encapsulating cytochrome c in silica aerogel nanoarchitectures without metal nanoparticles while retaining gas-phase bioactivity. J Vis Exp 109:e53802

    PubMed  Google Scholar 

  26. Bowden EF, Hawkridge FM, Blount HN (1984) Interfacial electrochemistry of cytochrome c at tin oxide, indium oxide, gold, and platinum electrodes. J Electroanal Chem Interf Electrochem 161:355–376

    Article  CAS  Google Scholar 

  27. Kang CH, Brautigan DL, Osheroff N, Margoliash E (1978) Definition of cytochrome c binding domains by chemical modification. Reaction of carboxydinitrophenyl- and trinitrophenyl-cytochromes c with baker’s yeast cytochrome c peroxidase. J Biol Chem 253:6502–6510

    CAS  PubMed  Google Scholar 

  28. Keating CD, Kovaleski KM, Natan MJ (1998) Protein : colloid conjugates for surface enhanced Raman scattering: stability and control of protein orientation. J Phys Chem B 102:9404–9413

    Article  CAS  Google Scholar 

  29. Koppenol WH, Margoliash E (1982) The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J Biol Chem 257:4426–4437

    CAS  PubMed  Google Scholar 

  30. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the U.S. Office of Naval Research and our colleague, Michael Doescher, for the graphics development of the model in Fig. 1. A.S.H. was an NRC–NRL Postdoctoral Associate (2004–2006). J.M.W. was an NRC–NRL Postdoctoral Associate (2000–2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda S. Harper-Leatherman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Harper-Leatherman, A.S., Wallace, J.M., Rolison, D.R. (2017). Cytochrome c Stabilization and Immobilization in Aerogels. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 1504. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6499-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6499-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6497-0

  • Online ISBN: 978-1-4939-6499-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics