Skip to main content

Lineage Tracing of Mammary Stem and Progenitor Cells

  • Protocol
  • First Online:
Mammary Gland Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1501))

Abstract

Lineage tracing analysis allows mammary epithelial cells to be tracked in their natural environment, thereby revealing cell fate and proliferation choices in the intact tissue. This technique is particularly informative for studying how stem cells build and maintain the mammary epithelium during development and pregnancy. Here we describe two experimental systems based on Cre/loxP technology (CreERT2/loxP and rtTA/tetO-Cre/loxP), which allow the inducible, permanent labeling of mammary epithelial cells following the administration of either tamoxifen or doxycycline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19(5):515–520

    CAS  PubMed  Google Scholar 

  2. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88. doi:10.1038/nature04372

    Article  CAS  PubMed  Google Scholar 

  3. Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28(11):1143–1158. doi:10.1101/gad.242511.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997. doi:10.1038/nature04496

    CAS  PubMed  Google Scholar 

  5. Smalley MJ, Kendrick H, Sheridan JM, Regan JL, Prater MD, Lindeman GJ, Watson CJ, Visvader JE, Stingl J (2012) Isolation of mouse mammary epithelial subpopulations: a comparison of leading methods. J Mammary Gland Biol Neoplasia 17(2):91–97. doi:10.1007/s10911-012-9257-1

    Article  PubMed  Google Scholar 

  6. Smalley MJ (2010) Isolation, culture and analysis of mouse mammary epithelial cells. Methods Mol Biol 633:139–170. doi:10.1007/978-1-59745-019-5_11

    Article  CAS  PubMed  Google Scholar 

  7. Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7. doi:10.1186/bcr1371

    Article  PubMed  Google Scholar 

  8. Prater M, Shehata M, Watson CJ, Stingl J (2013) Enzymatic dissociation, flow cytometric analysis, and culture of normal mouse mammary tissue. Methods Mol Biol 946:395–409. doi:10.1007/978-1-62703-128-8_25

    Article  CAS  PubMed  Google Scholar 

  9. Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506(7488):322–327. doi:10.1038/nature12948

    Article  CAS  PubMed  Google Scholar 

  10. van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11(3):387–400. doi:10.1016/j.stem.2012.05.023

    Article  PubMed  Google Scholar 

  11. Wang D, Cai C, Dong X, Yu QC, Zhang XO, Yang L, Zeng YA (2014) Identification of multipotent mammary stem cells by protein C receptor expression. Nature. doi:10.1038/nature13851

    Google Scholar 

  12. Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S, Schulte R, Kalajzic I, Rath N, Olson MF, Metzger D, Faraldo MM, Deugnier MA, Glukhova MA, Stingl J (2014) Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 16(10):942–950. doi:10.1038/ncb3025, 941-947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sale S, Lafkas D, Artavanis-Tsakonas S (2013) Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol 15(5):451–460. doi:10.1038/ncb2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Visser KE, Ciampricotti M, Michalak EM, Tan DW, Speksnijder EN, Hau CS, Clevers H, Barker N, Jonkers J (2012) Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 228(3):300–309. doi:10.1002/path.4096

    Article  PubMed  Google Scholar 

  15. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193. doi:10.1038/nature10573

    Article  PubMed  Google Scholar 

  16. Zhu Y, Huang YF, Kek C, Bulavin DV (2013) Apoptosis differently affects lineage tracing of Lgr5 and Bmi1 intestinal stem cell populations. Cell Stem Cell 12(3):298–303. doi:10.1016/j.stem.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  17. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802. doi:10.1038/nature09027

    Article  CAS  PubMed  Google Scholar 

  18. Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, Takeichi M, Wendt GR, Morrison SJ (2014) Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505(7484):555–558. doi:10.1038/nature12932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shehata M, van Amerongen R, Zeeman AL, Giraddi RR, Stingl J (2014) The influence of tamoxifen on normal mouse mammary gland homeostasis. Breast Cancer Res 16(4):411. doi:10.1186/s13058-014-0411-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chang TH, Kunasegaran K, Tarulli GA, De Silva D, Voorhoeve PM, Pietersen AM (2014) New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res 16(1):R1. doi:10.1186/bcr3593

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25(21):4323–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayashi M, Sutou S, Shimada H, Sato S, Sasaki YF, Wakata A (1989) Difference between intraperitoneal and oral gavage application in the micronucleus test. The 3rd collaborative study by CSGMT/JEMS.MMS. Collaborative Study Group for the Micronucleus Test/Mammalian Mutagenesis Study Group of the Environmental Mutagen Society of Japan. Mutat Res 223(4):329–344

    Article  CAS  PubMed  Google Scholar 

  23. Cawthorne C, Swindell R, Stratford IJ, Dive C, Welman A (2007) Comparison of doxycycline delivery methods for Tet-inducible gene expression in a subcutaneous xenograft model. J Biomol Tech 18(2):120–123

    PubMed  PubMed Central  Google Scholar 

  24. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19(15):4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakamura E, Nguyen MT, Mackem S (2006) Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 235(9):2603–2612. doi:10.1002/dvdy.20892

    Article  CAS  PubMed  Google Scholar 

  26. Reinert RB, Kantz J, Misfeldt AA, Poffenberger G, Gannon M, Brissova M, Powers AC (2012) Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7(3), e33529. doi:10.1371/journal.pone.0033529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reid JM, Goetz MP, Buhrow SA, Walden C, Safgren SL, Kuffel MJ, Reinicke KE, Suman V, Haluska P, Hou X, Ames MM (2014) Pharmacokinetics of endoxifen and tamoxifen in female mice: implications for comparative in vivo activity studies. Cancer Chemother Pharmacol. doi:10.1007/s00280-014-2605-7

    Google Scholar 

  28. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62. doi:10.1038/nature06293

    Article  CAS  PubMed  Google Scholar 

  29. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. doi:10.1016/j.cell.2010.09.016

  30. van Amerongen R (2015) Lineage Tracing in the Mammary Gland Using Cre/lox Technology and Fluorescent Reporter Alleles. Methods Mol Biol. 1293:187–211. doi:10.1007/978-1-4939-2519-3_11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renée van Amerongen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

van de Moosdijk, A.A.A., Fu, N.Y., Rios, A.C., Visvader, J.E., van Amerongen, R. (2017). Lineage Tracing of Mammary Stem and Progenitor Cells. In: Martin, F., Stein, T., Howlin, J. (eds) Mammary Gland Development. Methods in Molecular Biology, vol 1501. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6475-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6475-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6473-4

  • Online ISBN: 978-1-4939-6475-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics