Skip to main content

DNA G-Quadruplex-Based Assay of Enzyme Activity

  • Protocol
  • First Online:
3D DNA Nanostructure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1500))

Abstract

DNA G-quadruplexes are special three-dimensional (3D) DNA nanostructures formed by specific G-rich DNA sequences. These 3D DNA nanostructures can bind with hemin and significantly improve the intrinsic peroxidase activity of hemin. Besides this function, they also enhance the fluorescence intensity of some G-quadruplex-specific dyes. Owing to these features, G-quadruplexes possess several superiorities in the detection of enzymes involved in nucleic acid metabolism, including facile probe fabrication without labeling, simple detection process without washing or separation steps, rapid observation by naked eyes, and easy integration with nucleic acid amplification strategies to amplify signals. Herein, we describe two strategies for label-free detection of enzyme activity based on DNA G-quadruplexes. To increase sensitivity, template-dependent and template-independent DNA amplifications were introduced for the amplification of G-rich DNA sequences. DNA methyltransferase and terminal deoxynucleotidyl transferase were detected as two model analytes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huppert JL (2010) Structure, location and interactions of G-quadruplexes. FEBS J 277:3452–3458

    Article  CAS  PubMed  Google Scholar 

  2. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA–aptamer–hemin complex. Chem Biol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  4. Zhu X, Gao X, Liu Q et al (2011) Pb2+-introduced activation of horseradish peroxidase (HRP)-mimicking DNAzyme. Chem Commun 47:7437–7439

    Article  CAS  Google Scholar 

  5. Liu B, Zhang B, Chen G et al (2014) An omega-like DNA nanostructure utilized for small molecule introduction to stimulate formation of DNAzyme–aptamer conjugates. Chem Commun 50:1900–1902

    Article  CAS  Google Scholar 

  6. Zheng A, Li J, Wang J et al (2012) Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly. Chem Commun 48:3112–3114

    Article  CAS  Google Scholar 

  7. Wang F, Lu C, Liu X et al (2014) Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units. Anal Chem 86:1614–1621

    Article  CAS  PubMed  Google Scholar 

  8. Mohanty J, Barooah N, Dhamodharan V et al (2013) Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J Am Chem Soc 135:367–376

    Article  CAS  PubMed  Google Scholar 

  9. Peters GM, Skala LP, Plank TN et al (2015) G4-quartet · M+ borate hydrogels. J Am Chem Soc 137:5819–5827

    Article  CAS  PubMed  Google Scholar 

  10. Liu XF, Hua XX, Fan QL et al (2015) Thioflavin T as an efficient G-quadruplex inducer for the highly sensitive detection of thrombin using a new föster resonance energy transfer system. ACS Appl Mater Interfaces 7(30):16458–16465

    Article  CAS  PubMed  Google Scholar 

  11. Chen Q, Zuo JF, Chen JF et al (2015) A label-free fluorescent biosensor for ultratrace detection of terbium (ш) based on structural conversion of G-quadruplex DNA mediated by ThT and terbium (ш). Biosens Bioelectron 72:326–331

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Liu ZL, Lin H et al (2010) Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Anal Chem 82:1935–1941

    Article  CAS  PubMed  Google Scholar 

  13. He KY, Li W, Nie Z et al (2012) Enzyme-regulated activation of DNAzyme: a novel strategy for a label-free colorimetric DNA ligase assay and ligase-based biosensing. Chem Eur J 18:3992–3999

    Article  CAS  PubMed  Google Scholar 

  14. Liu ZL, Li W, Nie Z et al (2014) Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity. Chem Commun 50:6875–6878

    Article  CAS  Google Scholar 

  15. Kong DM (2013) Factors influencing the performance of G-quadruplex DNAzyme-based sensors. Methods 64:199–204

    Article  CAS  PubMed  Google Scholar 

  16. Cheng XD, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29:3784–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  18. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  19. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  20. Manel E (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440

    Article  Google Scholar 

  21. Coleman MS, Hutton JJ, Simone PD et al (1974) Terminal deoxyribonucleotidyl transferase in human leukemia. Proc Natl Acad Sci U S A 71:4404–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCaffrey R, Lillquist A, Sallan S et al (1981) Clinical utility of leukemia cell terminal transferase measurements. Cancer Res 1:4814–4820

    Google Scholar 

  23. Roychoudhury R, Jay E, Wu R (1976) Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynudeotidyl transferase. Nucleic Acids Res 3:101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deng GR, Wu R (1983) Terminal transferase: use in the tailing of DNA and for in vitro mutagenesis. Methods Enzymol 100:96–116

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt W, Mueller M (1996) Controlled ribonucleotide tailing of cDNA ends (CRTC) by terminal deoxynucleotidyl transferase: a new approach in PCR-mediated analysis of mRNA sequences. Nucleic Acids Res 24:1789–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorczyca W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53:1945–1951

    CAS  PubMed  Google Scholar 

  27. Kong DM, Xu J, Shen HX (2010) Positive dffects of ATP on G-Quadruplex-Hemin DNAzyme-mediated reactions. Anal Chem 82:6148–6153

    Article  CAS  PubMed  Google Scholar 

  28. Stefan L, Denat F, Monchaud D (2011) Deciphering the DNAzyme activity of multimeric quadruplexes: insights into their actual role in the telomerase activity evaluation assay. J Am Chem Soc 133:20405–20415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 21222507, 21175036, 21235002, 21575038, and 21305037), the Foundation for Innovative Research Groups of NSFC (Grant 21221003), and the Natural Science Foundation of Hunan Province (No. 2015JJ1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, Z. et al. (2017). DNA G-Quadruplex-Based Assay of Enzyme Activity. In: Ke, Y., Wang, P. (eds) 3D DNA Nanostructure. Methods in Molecular Biology, vol 1500. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6454-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6454-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6452-9

  • Online ISBN: 978-1-4939-6454-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics