Skip to main content

Ribosomal Synthesis of Thioether-Bridged Bicyclic Peptides

  • Protocol
  • First Online:
Book cover Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

Many biologically active peptides found in nature exhibit a bicyclic structure wherein a head-to-tail cyclic backbone is further constrained by an intramolecular linkage connecting two side chains of the peptide. Accordingly, methods to access macrocyclic peptides sharing this overall topology could be of significant value toward the discovery of new functional entities and bioactive compounds. With this goal in mind, we recently developed a strategy for enabling the biosynthesis of thioether-bridged bicyclic peptides in living bacterial cells. This method involves a split intein-catalyzed head-to-tail cyclization of a ribosomally produced precursor peptide, combined with inter-sidechain cross-linking through a genetically encoded cysteine-reactive amino acid. This approach can be applied to direct the formation of structurally diverse bicyclic peptides with high efficiency and selectivity in living Escherichia coli cells and provides a platform for the generation of combinatorial libraries of genetically encoded bicyclic peptides for screening purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery—an underexploited structural class. Nat Rev Drug Discov 7(7):608–624

    Article  CAS  PubMed  Google Scholar 

  2. London N, Raveh B, Schueler-Furman O (2013) Druggable protein-protein interactions—from hot spots to hot segments. Curr Opin Chem Biol 17(6):952–959

    Article  CAS  PubMed  Google Scholar 

  3. Bionda N, Fasan R (2015) Peptidomimetics of α-helical and β-strand protein binding epitopes. In: Czechtizky W, Hamley P (eds) Small molecule medicinal chemistry. Strategies and technologies. Wiley, Hoboken, NJ, pp 431–464

    Chapter  Google Scholar 

  4. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3(7):509–524

    Article  CAS  PubMed  Google Scholar 

  5. Hipolito CJ, Suga H (2012) Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems. Curr Opin Chem Biol 16(1–2):196–203

    Article  CAS  PubMed  Google Scholar 

  6. Smith JM, Frost JR, Fasan R (2013) Emerging strategies to access peptide macrocycles from genetically encoded polypeptides. J Org Chem 78(8):3525–3531

    Article  CAS  PubMed  Google Scholar 

  7. Frost JR, Smith JM, Fasan R (2013) Design, synthesis, and diversification of ribosomally derived peptide macrocycles. Curr Opin Struct Biol 23(4):571–580

    Article  CAS  PubMed  Google Scholar 

  8. Baeriswyl V, Heinis C (2013) Polycyclic peptide therapeutics. ChemMedChem 8(3):377–384

    Article  CAS  PubMed  Google Scholar 

  9. Lennard KR, Tavassoli A (2014) Peptides come round: using SICLOPPS libraries for early stage drug discovery. Chemistry 20(34):10608–10614

    Article  CAS  PubMed  Google Scholar 

  10. Bowers AA (2012) Biochemical and biosynthetic preparation of natural product-like cyclic peptide libraries. Med Chem Commun 3(8):905–915

    Article  CAS  Google Scholar 

  11. Josephson K, Ricardo A, Szostak JW (2014) mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today 19(4):388–399

    Article  CAS  PubMed  Google Scholar 

  12. Smith JM, Vitali F, Archer SA, Fasan R (2011) Modular assembly of macrocyclic organo-peptide hybrids using synthetic and genetically encoded precursors. Angew Chem Int Ed Engl 50(22):5075–5080

    Article  CAS  PubMed  Google Scholar 

  13. Satyanarayana M, Vitali F, Frost JR, Fasan R (2012) Diverse organo-peptide macrocycles via a fast and catalyst-free oxime/intein-mediated dual ligation. Chem Commun (Camb) 48(10):1461–1463

    Article  CAS  Google Scholar 

  14. Frost JR, Vitali F, Jacob NT, Brown MD, Fasan R (2013) Macrocyclization of organo-peptide hybrids through a dual bio-orthogonal ligation: insights from structure-reactivity studies. Chembiochem 14(1):147–160

    Article  CAS  PubMed  Google Scholar 

  15. Smith JM, Hill NC, Krasniak PJ, Fasan R (2014) Synthesis of bicyclic organo-peptide hybrids via oxime/intein-mediated macrocyclization followed by disulfide bond formation. Org Biomol Chem 12(7):1135–1142

    Article  CAS  PubMed  Google Scholar 

  16. Frost JR, Jacob NT, Papa LJ, Owens AE, Fasan R (2015) Ribosomal synthesis of macrocyclic peptides in vitro and in vivo mediated by genetically encoded aminothiol unnatural amino acids. ACS Chem Biol 10(8):1805–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bionda N, Cryan AL, Fasan R (2014) Bioinspired strategy for the ribosomal synthesis of thioether-bridged macrocyclic peptides in bacteria. ACS Chem Biol 9(9):2008–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bionda N, Fasan R (2015) Ribosomal synthesis of natural-product-like bicyclic peptides in Escherichia coli. Chembiochem 16(14):2011–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A 96(24):13638–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  21. Nordgren IK, Tavassoli A (2014) A bidirectional fluorescent two-hybrid system for monitoring protein-protein interactions. Mol Biosyst 10(3):485–490

    Article  CAS  PubMed  Google Scholar 

  22. Horswill AR, Savinov SN, Benkovic SJ (2004) A systematic method for identifying small-molecule modulators of protein-protein interactions. Proc Natl Acad Sci U S A 101(44):15591–15596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395(2):361–374

    Article  CAS  PubMed  Google Scholar 

  24. Zuger S, Iwai H (2005) Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23(6):736–740

    Article  CAS  PubMed  Google Scholar 

  25. Katz BA (1995) Binding to protein targets of peptidic leads discovered by phage display: crystal structures of streptavidin-bound linear and cyclic peptide ligands containing the HPQ sequence. Biochemistry 34(47):15421–15429

    Article  CAS  PubMed  Google Scholar 

  26. Naumann TA, Savinov SN, Benkovic SJ (2005) Engineering an affinity tag for genetically encoded cyclic peptides. Biotechnol Bioeng 92(7):820–830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Institutes of Health (grant R21 CA187502). MS instrumentation was supported by the US National Science Foundation (grants CHE-0840410 and CHE-0946653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Fasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bionda, N., Fasan, R. (2017). Ribosomal Synthesis of Thioether-Bridged Bicyclic Peptides. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics