Skip to main content

LOV2-Controlled Photoactivation of Protein Trans-Splicing

  • Protocol
  • First Online:
Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

  • 1842 Accesses

Abstract

Protein trans-splicing is a posttranslational modification that joins two protein fragments together via a peptide a bond in a process that does not require exogenous cofactors. Towards achieving cellular control, synthetically engineered systems have used a variety of stimuli such as small molecules and light. Recently, split inteins have been engineered to be photoactive by the LOV2 domain (named LOVInC). Herein, we discuss (1) designing of LOV2-activated target proteins (e.g., inteins), (2) selecting feasible splice sites for the extein, and (3) imaging cells that express LOVInC-based target exteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 95(16):9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Topilina NI, Mills KV (2014) Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 5(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iwai H et al (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580(7):1853–1858

    Article  CAS  PubMed  Google Scholar 

  4. Herrou J, Crosson S (2011) Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol 9(10):713–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Renicke C et al (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20(4):619–626

    Article  CAS  PubMed  Google Scholar 

  6. Strickland D et al (2010) Rationally improving LOV domain-based photoswitches. Nat Methods 7(8):623–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones MA et al (2007) Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem 282(9):6405–6414

    Article  CAS  PubMed  Google Scholar 

  8. Rana A, Dolmetsch RE (2010) Using light to control signaling cascades in live neurons. Curr Opin Neurobiol 20(5):617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strickland D, Moffat K, Sosnick TR (2008) Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci U S A 105(31):10709–10714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu YI et al (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pham E, Mills E, Truong K (2011) A synthetic photoactivated protein to generate local or global Ca(2+) signals. Chem Biol 18(7):880–890

    Article  CAS  PubMed  Google Scholar 

  12. Mills E et al (2012) Engineering a photoactivated caspase-7 for rapid induction of apoptosis. ACS Synth Biol 1(3):75–82

    Article  CAS  PubMed  Google Scholar 

  13. Wong S, Mosabbir AA, Truong K (2015) An engineered split intein for photoactivated protein trans-splicing. PLoS One 10(8):e0135965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johansson MU et al (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics 13:173

    Article  PubMed  PubMed Central  Google Scholar 

  15. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27-8

    Article  CAS  PubMed  Google Scholar 

  16. Andrei RM et al (2012) Intuitive representation of surface properties of biomolecules using BioBlender. BMC Bioinformatics 13(Suppl 4):S16

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heffernan R et al (2015) Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci Rep 5:11476

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sormanni P et al (2015) The s2D method: simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins. J Mol Biol 427(4):982–996

    Article  CAS  PubMed  Google Scholar 

  19. Kallberg M et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edelstein AD et al (2015) Advanced methods of microscope control using muManager software. J Biol Methods 1(2):e10

    Article  Google Scholar 

  21. Truong K, Khorchid A, Ikura M (2003) A fluorescent cassette-based strategy for engineering multiple domain fusion proteins. BMC Biotechnol 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Feeney M, Murphy K, Lopilato J (2014) Designing PCR primers painlessly. J Microbiol Biol Educ 15(1):28–29

    Article  PubMed  PubMed Central  Google Scholar 

  23. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16(7):379–394

    Article  CAS  PubMed  Google Scholar 

  24. Huhner J et al (2015) Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection. Electrophoresis 36(4):518–525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Canadian Cancer Society Research Institute (#701936) and NSERC (#05322-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qudrat, A., Mosabbir, A., Truong, K. (2017). LOV2-Controlled Photoactivation of Protein Trans-Splicing. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics