Skip to main content

Segmental Isotope Labeling of Insoluble Proteins for Solid-State NMR by Protein Trans-Splicing

  • Protocol
  • First Online:
Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

Solid-state NMR spectroscopy (ssNMR) is uniquely suited for atomic-resolution structural investigations of large protein assemblies, which are notoriously difficult to study due to their insoluble and non-crystalline nature. However, assignment ambiguities because of limited resolution and spectral crowding are currently major hurdles that quickly increase with the length of the polypeptide chain. The line widths of ssNMR signals are independent of proteins size, making segmental isotope labeling a powerful approach to overcome this limitation. It allows a scalable reduction of signal overlap, aids the assignment of repetitive amino acid sequences, and can be easily combined with other selective isotope labeling strategies. Here we present a detailed protocol for segmental isotope labeling of insoluble proteins using protein trans-splicing. Our protocol exploits the ability of many insoluble proteins, such as amyloid fibrils, to fold correctly under in vitro conditions. In combination with the robust trans-splicing efficiency of the intein DnaE from Nostoc punctiforme, this allows for high yields of segmentally labeled protein required for ssNMR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comellas G, Rienstra CM (2013) Protein structure determination by magic-angle spinning solid-state NMR, and insights into the formation, structure, and stability of amyloid fibrils. Annu Rev Biophys 42:515–536. doi:10.1146/annurev-biophys-083012-130356

    Article  CAS  PubMed  Google Scholar 

  2. Schütz AK, Vagt T, Huber M et al (2015) Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew Chem Int Ed Engl 54:331–335. doi:10.1002/anie.201408598

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Munro RA, Shi L et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012. doi:10.1038/nmeth.2635

    Article  CAS  PubMed  Google Scholar 

  4. Loquet A, Sgourakis NG, Gupta R et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279. doi:10.1038/nature11079

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Verardi R, Traaseth NJ, Masterson LR et al (2012) Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62. doi:10.1007/978-94-007-4954-2_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Volkmann G, Iwaï H (2010) Protein trans-splicing and its use in structural biology: opportunities and limitations. Mol Biosyst 6:2110–2121. doi:10.1039/c0mb00034e

    Article  CAS  PubMed  Google Scholar 

  7. Minato Y, Ueda T, Machiyama A et al (2012) Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. J Biomol NMR 53:191–207. doi:10.1007/s10858-012-9628-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freiburger L, Sonntag M, Hennig J et al (2015) Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J Biomol NMR 63:1–8. doi:10.1007/s10858-015-9981-0

    Article  CAS  PubMed  Google Scholar 

  9. Muona M, Aranko AS, Raulinaitis V, Iwaï H (2010) Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat Protoc 5:574–587. doi:10.1038/nprot.2009.240

    Article  CAS  PubMed  Google Scholar 

  10. Iwai H, Züger S, Jin J, Tam P-H (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858. doi:10.1016/j.febslet.2006.02.045

    Article  CAS  PubMed  Google Scholar 

  11. Zettler J, Schütz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914. doi:10.1016/j.febslet.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  12. Schubeis T, Lührs T, Ritter C (2015) Unambiguous assignment of short- and long-range structural restraints by solid-state NMR spectroscopy with segmental isotope labeling. Chembiochem 16:51–54. doi:10.1002/cbic.201402446

    Article  CAS  PubMed  Google Scholar 

  13. Schubeis T, Yuan P, Ahmed M et al (2015) Untangling a repetitive amyloid sequence: correlating biofilm-derived and segmentally labeled curli fimbriae by solid-state nmr spectroscopy. Angew Chem Int Ed Engl 54:14669–72. doi:10.1002/anie.201506772

    Article  CAS  PubMed  Google Scholar 

  14. Park SH, Casagrande F, Chu M et al (2012) Optimization of purification and refolding of the human chemokine receptor CXCR1 improves the stability of proteoliposomes for structure determination. Biochim Biophys Acta 1818:584–591. doi:10.1016/j.bbamem.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Michalke K, Huyghe C, Lichière J et al (2010) Mammalian G protein-coupled receptor expression in Escherichia coli: II. Refolding and biophysical characterization of mouse cannabinoid receptor 1 and human parathyroid hormone receptor 1. Anal Biochem 401:74–80. doi:10.1016/j.ab.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  16. Otomo T, Ito N, Kyogoku Y, Yamazaki T (1999) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38:16040–16044

    Article  CAS  PubMed  Google Scholar 

  17. Cheriyan M, Pedamallu CS, Tori K, Perler F (2013) Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J Biol Chem 288:6202–6211. doi:10.1074/jbc.M112.433094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah NH, Eryilmaz E, Cowburn D, Muir TW (2013) Naturally split inteins assemble through a “capture and collapse” mechanism. J Am Chem Soc 135:18673–18681. doi:10.1021/ja4104364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi L, Ladizhansky V (2012) Magic angle spinning solid-state NMR experiments for structural characterization of proteins. Methods Mol Biol 895:153–165. doi:10.1007/978-1-61779-927-3_12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Ritter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schubeis, T., Nagaraj, M., Ritter, C. (2017). Segmental Isotope Labeling of Insoluble Proteins for Solid-State NMR by Protein Trans-Splicing. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics