Characterizing Plexin GTPase Interactions Using Gel Filtration, Surface Plasmon Resonance Spectrometry, and Isothermal Titration Calorimetry

  • Jeannine Muller-Greven
  • SoonJeung Kim
  • Prasanta K. Hota
  • Yufeng Tong
  • Susmita Borthakur
  • Matthias BuckEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1493)


Plexins are unique, as they are the first example of a transmembrane receptor that interacts directly with small GTPases, a family of proteins that are essential for cell motility and proliferation/survival. We and other laboratories have determined the structure of the Rho GTPase-binding domain (RBD) of several plexins and also of the entire intracellular region of plexin-B1. Structures of plexin complexes with Rho GTPases, Rac1 and Rnd1, and a structure with a Ras GTPase, Rap1b, have also been solved. The relationship between plexin-Rho and plexin-Ras interactions is still unclear and in vitro biophysical experiments that characterize the protein interactions of purified components play an important role in advancing our understanding of the molecular mechanisms that underlie the function of plexin. This chapter describes the use of gel filtration (also known as size-exclusion chromatography or SEC), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) in studies of plexin—small GTPase interactions with plexin-B1:Rac1 as an example. Together with other assays and manipulations (e.g., by mutagenesis or protein domain truncation/deletion), these in vitro measurements provide an important reference for the role and extent of the interactions.

Key words

Protein binding affinity Protein complex formation Rho GTPases Rac1 Size-exclusion chromatography [SEC] Surface plasmon resonance spectrometry [SPR] Isothermal titration calorimetry [ITC] 



We thank Drs. Shufen Cao, Liqun Zhang, and other members of the Buck lab for insightful discussion. The work of M.B. was supported by the NIH grants R01GM92851 and R01GM73071.


  1. 1.
    Huber AB, Kolodkin AL, Ginty DD et al (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563CrossRefPubMedGoogle Scholar
  2. 2.
    Hota PK, Buck M (2012) Plexin structures are coming! Multilevel investigations of the function of the guidance receptors and their mechanisms of cell signaling. Cell Mol Life Sci 69:3765–3805CrossRefPubMedGoogle Scholar
  3. 3.
    Tamagnone L (2012) Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. Cancer Cell 22:145–152CrossRefPubMedGoogle Scholar
  4. 4.
    Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304CrossRefPubMedGoogle Scholar
  5. 5.
    Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877CrossRefPubMedGoogle Scholar
  6. 6.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635CrossRefPubMedGoogle Scholar
  7. 7.
    Raaijmakers JH, Bos JL (2009) Specificity in Ras and Rap signaling. J Biol Chem 284:10995–10999CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kinbara K, Goldfinger LE, Hansen M et al (2003) Ras GTPases: integrins’ friends or foes? Nat Rev Mol Cell Biol 4:767–776CrossRefPubMedGoogle Scholar
  9. 9.
    Vikis HG, Li W, Guan KL (2002) The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev 16:836–845CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Antipenko A, Himanen JP, van Leyen K et al (2003) Structure of the semaphorin-3A receptor binding module. Neuron 39:589–598CrossRefPubMedGoogle Scholar
  11. 11.
    Tong Y, Chugha P, Hota PK et al (2007) Binding of Rac1, Rnd1 and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J Biol Chem 282:37215–37224CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bouguet-Bonnet S, Buck M (2008) Compensatory and long-range changes in ps-ns mainchain dynamics upon complex formation. 15N relaxation analysis of the free and bound states of the ubiquitin-like domain of human plexin-B1 and the small GTPase Rac1. J Mol Biol 377:1474–1487CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhou Y, Gunput RA, Pasterkamp RJ (2008) Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 33:161–170CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Y, He H, Srivastava N et al (2012) Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci Signal 5:ra6PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tong Y, Hughes D, Placanica L, Buck M (2005) When monomers are preferred: a strategy for the identification and disruption of weakly oligomerized proteins. Structure 13:5–17CrossRefGoogle Scholar
  16. 16.
    Hota P, Buck M (2009) Thermodynamic characterization of two homologous protein complexes: Association of the semaphorin receptor plexin-B1 Rho GTPase binding domain with Rnd1 and active Rac1. Protein Sci 18:1060–1071CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tong Y, Hota PK, Penachioni JY et al (2009) Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. J Biol Chem 284:35962–35972CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bell CH, Aricescu AR, Jones EY et al (2011) A dual binding mode for Rho GTPases in plexin signaling. PLoS Biol 9:e1001134CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang Y, Pascoe HG, Brautigam CA et al (2013) Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of Plexin. Elife 2:e01279PubMedPubMedCentralGoogle Scholar
  20. 20.
    Tong Y, Hota PK, Bagheri HM, Buck M (2008) Insights into oncogenic mutations of plexin-B1 based on the solution structure of the Rho GTPase binding domain. Structure 16:246–258CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang H, Hota PK, Tong Y et al (2011) Structural basis of Rho GTPase Rnd1 binding to plexin RBDs. J Biol Chem 286:26093–26106CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    O'Fágáin C, Cummins PM, O'Connor BF (2011) Gel-filtration chromatography. Methods Mol Biol 681:25–33CrossRefPubMedGoogle Scholar
  23. 23.
    Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8:50–57CrossRefPubMedGoogle Scholar
  24. 24.
    Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284CrossRefPubMedGoogle Scholar
  25. 25.
    Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning. J Mol Recognit 12(1):3–18CrossRefPubMedGoogle Scholar
  26. 26.
    Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein-protein interactions. Methods 19:213–221CrossRefPubMedGoogle Scholar
  27. 27.
    Cao S, Buck M (2011) Optimization and stabilization of Rho small GTPase proteins for solution NMR studies: the case of Rnd1. Small GTPases 6:295–304CrossRefGoogle Scholar
  28. 28.
    Sambrook J, Russel DW (2001) Molecular cloning, 1st edn. Cold Spring Harbor, New YorkGoogle Scholar
  29. 29.
    Deng J, Davies DR, Wisedchaisri G et al (2004) An improved protocol for rapid freezing of protein samples for long-term storage. Acta Crystallogr 60:203–204Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jeannine Muller-Greven
    • 1
  • SoonJeung Kim
    • 1
  • Prasanta K. Hota
    • 1
  • Yufeng Tong
    • 2
  • Susmita Borthakur
    • 1
  • Matthias Buck
    • 1
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Physiology and BiophysicsCase Western Reserve University, School of MedicineClevelandUSA
  2. 2.Structural Genomics Consortium, Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
  3. 3.Department of NeurosciencesCase Western Reserve University, School of MedicineClevelandUSA
  4. 4.Department of PharmacologyCase Western Reserve University, School of MedicineClevelandUSA
  5. 5.Case Comprehensive Cancer CenterCase Western Reserve University, School of MedicineClevelandUSA
  6. 6.Center for Proteomics and BioinformaticsCase Western Reserve University, School of MedicineClevelandUSA

Personalised recommendations