Skip to main content

Production of Adjuvant-Loaded Biodegradable Particles for Use in Cancer Vaccines

  • Protocol
  • First Online:
Vaccine Adjuvants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1494))

Abstract

Immune adjuvants, such as ligands for pathogen-associated molecular patterns (PAMPs), have been showing promise in boosting immune responses to tumor associated antigens, and delivering these adjuvants as discrete packages is considered advantageous over delivery in soluble form. Here we describe in detail, methods for independently loading a range of adjuvants into polymer-based biodegradable particles. We also describe the means by which to characterize these particles with respect to adjuvant loading and release kinetics as well as in terms of particle size, shape, and zeta-potential. These adjuvant-loaded particles have the potential to be used in dendritic cell-based uptake experiments performed in vitro or to be used in preclinical cancer vaccine research applications where they can be co-delivered with antigen-loaded particles or some other vaccine component comprising antigenic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8):630–641

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed KK, Geary SM, Salem AK (2014) Applying biodegradable particles to enhance cancer vaccine efficacy. Immunol Res 59(1-3):220–228

    Article  CAS  PubMed  Google Scholar 

  4. Eldridge JH et al (1991) Biodegradable microspheres as a vaccine delivery system. Mol Immunol 28(3):287–294

    Article  CAS  PubMed  Google Scholar 

  5. Hamdy S et al (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63(10-11):943–955

    Article  CAS  PubMed  Google Scholar 

  6. Schijns VE, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10(4):539–550

    Article  CAS  PubMed  Google Scholar 

  7. Tefit JN, Serra V (2011) Outlining novel cellular adjuvant products for therapeutic vaccines against cancer. Expert Rev Vaccines 10(8):1207–1220

    Article  CAS  PubMed  Google Scholar 

  8. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  9. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826

    Article  CAS  PubMed  Google Scholar 

  10. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  CAS  PubMed  Google Scholar 

  11. Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222(1):357–368

    Article  CAS  PubMed  Google Scholar 

  12. Steinhagen F et al (2011) TLR-based immune adjuvants. Vaccine 29(17):3341–3355

    Article  CAS  PubMed  Google Scholar 

  13. Giannini SL et al (2006) Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24(33-34):5937–5949

    Article  CAS  PubMed  Google Scholar 

  14. Ammi R et al (2015) Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther 146:120–131

    Article  CAS  PubMed  Google Scholar 

  15. Hafner AM, Corthesy B, Merkle H (2013) Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 65(10):1386–1399

    Article  CAS  PubMed  Google Scholar 

  16. Hemmi H et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200

    Article  CAS  PubMed  Google Scholar 

  17. Kobold S et al (2014) Modes of action of TLR7 agonists in cancer therapy. Immunotherapy 6(10):1085–1095

    Article  CAS  PubMed  Google Scholar 

  18. Bode C et al (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan S, Gu W, Xu Z (2013) Re-considering how particle size and other properties of antigen-adjuvant complexes impact on the immune responses. J Colloid Interface Sci 395:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Gutierro I et al (2002) Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21(1-2):67–77

    Article  CAS  PubMed  Google Scholar 

  21. Katare YK, Muthukumaran T, Panda AK (2005) Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm 301(1-2):149–160

    Article  CAS  PubMed  Google Scholar 

  22. Rueckert C, Guzman CA (2012) Vaccines: from empirical development to rational design. PLoS Pathog 8(11):e1003001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colditz GA et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271(9):698–702

    Article  CAS  PubMed  Google Scholar 

  25. Nabel GJ (2013) Designing tomorrow’s vaccines. N Engl J Med 368(6):551–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397

    Article  CAS  Google Scholar 

  27. Shaffie KA et al (2010) Effect of polyvinyl alcohol of different molecular weights as protective colloids on the kinetics of the emulsion polymerization of vinyl acetate. J Am Sci 6(10):1202–1212

    Google Scholar 

  28. Foged C et al (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298(2):315–322

    Article  CAS  PubMed  Google Scholar 

  29. Sah E, Sah H (2015) Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 2015:1–22

    Article  Google Scholar 

  30. Joshi VB, Geary SM, Salem AK (2013) Biodegradable particles as vaccine delivery systems: size matters. AAPS J 15(1):85–94

    Article  CAS  PubMed  Google Scholar 

  31. Hines DJ, Kaplan DL (2013) Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst 30(3):257–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Barros, C.M., Wafa, E.I., Chitphet, K., Ahmed, K., Geary, S.M., Salem, A.K. (2017). Production of Adjuvant-Loaded Biodegradable Particles for Use in Cancer Vaccines. In: Fox, C. (eds) Vaccine Adjuvants. Methods in Molecular Biology, vol 1494. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6445-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6445-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6443-7

  • Online ISBN: 978-1-4939-6445-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics