Skip to main content

Activity-Based Protein Profiling with Natural Product-Derived Chemical Probes in Human Cell Lysates

  • Protocol
  • First Online:
Activity-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1491))

  • 2741 Accesses

Abstract

Bioreactive natural products represent versatile starting points for the development of structurally unique activity-based probes. In the present protocol, we describe the workflow for an activity-based protein profiling (ABPP) experiment with an alkyne-tagged natural product derivative. Our protocol includes experimental procedures for in vivo labeling, sample preparation and 2-step (click chemistry) visualization and sample preparation for mass spectrometry-based target identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414. doi:10.1146/annurev.biochem.75.101304.124125

    Article  CAS  PubMed  Google Scholar 

  2. Li N, Overkleeft HS, Florea BI (2012) Activity-based protein profiling: an enabling technology in chemical biology research. Curr Opin Chem Biol 16(1-2):227–233. doi:10.1016/j.cbpa.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  3. Krysiak J, Breinbauer R (2012) Activity-based protein profiling for natural product target discovery. Top Curr Chem 324:43–84. doi:10.1007/128_2011_289

    Article  CAS  PubMed  Google Scholar 

  4. Drahl C, Cravatt BF, Sorensen EJ (2005) Protein-reactive natural products. Angew Chem Int Ed Engl 44(36):5788–5809. doi:10.1002/anie.200500900

    Article  CAS  PubMed  Google Scholar 

  5. Gersch M, Kreuzer J, Sieber SA (2012) Electrophilic natural products and their biological targets. Nat Prod Rep 29(6):659–682. doi:10.1039/c2np20012k

    Article  CAS  PubMed  Google Scholar 

  6. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7(8):569–581

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto K, Mizoue K, Kitamura K, Tse WC, Huber CP, Ishida T (1999) Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers 51(1):99–107. doi:10.1002/(SICI)1097-0282(1999)51:1<99::AID-BIP11>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  8. Clerc J, Florea BI, Kraus M, Groll M, Huber R, Bachmann AS, Dudler R, Driessen C, Overkleeft HS, Kaiser M (2009) Syringolin A selectively labels the 20 S proteasome in murine EL4 and wild-type and bortezomib-adapted leukaemic cell lines. Chembiochem 10(16):2638–2643. doi:10.1002/cbic.200900411

    Article  CAS  PubMed  Google Scholar 

  9. Verdoes M, Florea BI, van der Marel GA, Overkleeft HS (2009) Chemical tools to study the proteasome. Eur J Org Chem 20:3301–3313. doi:10.1002/ejoc.200900075

    Article  Google Scholar 

  10. Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, Schellenberg B, Dudler R, Kaiser M (2009) Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proc Natl Acad Sci U S A 106(16):6507–6512. doi:10.1073/pnas.0901982106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yee MC, Fas SC, Stohlmeyer MM, Wandless TJ, Cimprich KA (2005) A cell-permeable, activity-based probe for protein and lipid kinases. J Biol Chem 280(32):29053–29059. doi:10.1074/jbc.M504730200

    Article  CAS  PubMed  Google Scholar 

  12. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF (2005) Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 23(10):1303–1307. doi:10.1038/nbt1149

    Article  CAS  PubMed  Google Scholar 

  13. Taori K, Liu Y, Paul VJ, Luesch H (2009) Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. Chembiochem 10(10):1634–1639. doi:10.1002/cbic.200900192

    Article  CAS  PubMed  Google Scholar 

  14. Linington RG, Clark BR, Trimble EE, Almanza A, Urena LD, Kyle DE, Gerwick WH (2009) Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 72(1):14–17. doi:10.1021/np8003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conroy T, Guo JT, Linington RG, Hunt NH, Payne RJ (2011) Total synthesis, stereochemical assignment, and antimalarial activity of gallinamide A. Chemistry 17(48):13544–13552. doi:10.1002/chem.201102538

    Article  CAS  PubMed  Google Scholar 

  16. Conroy T, Guo JT, Hunt NH, Payne RJ (2010) Total synthesis and antimalarial activity of symplostatin 4. Org Lett 12(23):5576–5579. doi:10.1021/ol1024663

    Article  CAS  PubMed  Google Scholar 

  17. Stolze SC, Deu E, Kaschani F, Li N, Florea BI, Richau KH, Colby T, van der Hoorn RA, Overkleeft HS, Bogyo M, Kaiser M (2012) The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem Biol 19(12):1546–1555. doi:10.1016/j.chembiol.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11(4):535–546. doi:10.1016/j.chembiol.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  19. Verhelst SH, Bogyo M (2005) Chemical proteomics applied to target identification and drug discovery. Biotechniques 38(2):175–177

    Article  CAS  PubMed  Google Scholar 

  20. Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9):616–624. doi:10.1038/nchembio.216

    Article  CAS  PubMed  Google Scholar 

  21. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  22. White K, Bruckner JV, Guess WL (1973) Toxicological studies of 2-mercaptoethanol. J Pharm Sci 62(2):237–241

    Article  CAS  PubMed  Google Scholar 

  23. Zikolov P, Budevsky O (1973) Acid-base equilibria in ethylene glycol--I: definition of pH and determination of pk-values of acid-base indicators. Talanta 20(5):487–493

    Article  CAS  PubMed  Google Scholar 

  24. Bock VD, Hiemstra H, van Maarseveen JH (2006) Cu-I-catalyzed alkyne-azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 1:51–68. doi:10.1002/ejoc.200500483

    Article  Google Scholar 

  25. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021

    Article  CAS  PubMed  Google Scholar 

  26. Anderegg G (1964) Komplexone 36. Reaktionsenthalpie Und -Entropie Bei Der Bildung Der Metallkomplexe Der Hoheren Edta-Homologen. Helv Chim Acta 47 (7): 1801–&. doi:DOI 10.1002/hlca.19640470716

  27. Andrews PC, Dixon JE (1987) A procedure for in situ alkylation of cystine residues on glass fiber prior to protein microsequence analysis. Anal Biochem 161(2):524–528

    Article  CAS  PubMed  Google Scholar 

  28. Galvani M, Hamdan M, Herbert B, Righetti PG (2001) Alkylation kinetics of proteins in preparation for two-dimensional maps: a matrix assisted laser desorption/ionization-mass spectrometry investigation. Electrophoresis 22(10):2058–2065. doi:10.1002/1522-2683(200106)22:10<2058::AID-ELPS2058>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  29. Herbert B, Galvani M, Hamdan M, Olivieri E, MacCarthy J, Pedersen S, Righetti PG (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22(10):2046–2057. doi:10.1002/1522-2683(200106)22:10<2046::AID-ELPS2046>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  30. Garner AY, Chapin EC, Scanlon PM (1959) Mechanism of the Michaelis-Arbuzov reaction–olefin formation. J Org Chem 24(4):532–536. doi:10.1021/jo01086a023

    Article  CAS  Google Scholar 

  31. Smillie LB, Neurath H (1959) Reversible inactivation of trypsin by anhydrous formic acid. J Biol Chem 234(2):355–359

    CAS  PubMed  Google Scholar 

  32. MacKinnon AL, Garrison JL, Hegde RS, Taunton J (2007) Photo-leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of cotranslational translocation. J Am Chem Soc 129(47):14560–14561. doi:10.1021/ja076250y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  34. Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705. doi:10.1038/nprot.2009.36

    Article  CAS  PubMed  Google Scholar 

  35. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. doi:10.1074/mcp.M113.031591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the following funding agencies: ERC starting grant (to M.K., grant No. 258413), the COST Action CM1004 and the DFG (to M.K., grants no. INST 20876/127-1 FUGG and SFB 1093/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zweerink, S., Pollmann, T., Ninck, S., Kaschani, F., Kaiser, M. (2017). Activity-Based Protein Profiling with Natural Product-Derived Chemical Probes in Human Cell Lysates. In: Overkleeft, H., Florea, B. (eds) Activity-Based Proteomics. Methods in Molecular Biology, vol 1491. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6439-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6439-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6437-6

  • Online ISBN: 978-1-4939-6439-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics