Skip to main content

Cleavable Linkers in Chemical Proteomics Applications

  • Protocol
  • First Online:
Activity-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1491))

Abstract

The discovery of the protein targets of small molecule probes is a crucial aspect of activity-based protein profiling and chemical biology. Mass spectrometry is the primary method for target identification, and in the last decade, cleavable linkers have become a popular strategy to facilitate protein enrichment and identification. In this chapter, we provide an overview of cleavable linkers used in chemical proteomics approaches, discuss their different chemistries, and describe how they aid in protein identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299. doi:10.1146/annurev-biochem-061308-093216

    Article  CAS  PubMed  Google Scholar 

  2. Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9):616–624. doi:10.1038/nchembio.216

    Article  CAS  PubMed  Google Scholar 

  3. Haedke U, Kuttler EV, Vosyka O, Yang Y, Verhelst SH (2013) Tuning probe selectivity for chemical proteomics applications. Curr Opin Chem Biol 17(1):102–109. doi:10.1016/j.cbpa.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  4. Sadaghiani AM, Verhelst SH, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11(1):20–28. doi:10.1016/j.cbpa.2006.11.030

    Article  CAS  PubMed  Google Scholar 

  5. Willems LI, van der Linden WA, Li N, Li KY, Liu N, Hoogendoorn S, van der Marel GA, Florea BI, Overkleeft HS (2011) Bioorthogonal chemistry: applications in activity-based protein profiling. Acc Chem Res 44(9):718–729. doi:10.1021/ar200125k

    Article  CAS  PubMed  Google Scholar 

  6. Best MD (2009) Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48(28):6571–6584. doi:10.1021/bi9007726

    Article  CAS  PubMed  Google Scholar 

  7. Garret-Flaudy F, Freitag R (2000) Use of the avidin (imino)biotin system as a general approach to affinity precipitation. Biotechnol Bioeng 71(3):223–234

    Article  CAS  PubMed  Google Scholar 

  8. Flaster H, Kohn H (1981) Syntheses and spectral properties of 2-thiobiotin and biotin derivatives. J Heterocyclic Chem 18(7):1425–1436

    Article  CAS  Google Scholar 

  9. Hirsch JD, Eslamizar L, Filanoski BJ, Malekzadeh N, Haugland RP, Beechem JM, Haugland RP (2002) Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem 308(2):343–357

    Article  CAS  PubMed  Google Scholar 

  10. Ying LQ, Branchaud BP (2011) Design of a reversible biotin analog and applications in protein labeling, detection, and isolation. Chem Commun (Camb) 47(30):8593–8595. doi:10.1039/c1cc12738a

    Article  CAS  Google Scholar 

  11. Leriche G, Chisholm L, Wagner A (2012) Cleavable linkers in chemical biology. Bioorg Med Chem 20(2):571–582. doi:10.1016/j.bmc.2011.07.048

    Article  CAS  PubMed  Google Scholar 

  12. van der Veken P, Dirksen EH, Ruijter E, Elgersma RC, Heck AJ, Rijkers DT, Slijper M, Liskamp RM (2005) Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides. Chembiochem 6(12):2271–2280. doi:10.1002/cbic.200500209

    Article  PubMed  Google Scholar 

  13. Fauq AH, Kache R, Khan MA, Vega IE (2006) Synthesis of acid-cleavable light isotope-coded affinity tags (ICAT-L) for potential use in proteomic expression profiling analysis. Bioconjug Chem 17(1):248–254. doi:10.1021/bc0503059

    Article  CAS  PubMed  Google Scholar 

  14. Truong TH, Garcia FJ, Seo YH, Carroll KS (2011) Isotope-coded chemical reporter and acid-cleavable affinity reagents for monitoring protein sulfenic acids. Bioorg Med Chem Lett 21(17):5015–5020. doi:10.1016/j.bmcl.2011.04.115

    Article  CAS  PubMed  Google Scholar 

  15. Szychowski J, Mahdavi A, Hodas JJ, Bagert JD, Ngo JT, Landgraf P, Dieterich DC, Schuman EM, Tirrell DA (2010) Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J Am Chem Soc 132(51):18351–18360. doi:10.1021/ja1083909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park KD, Liu R, Kohn H (2009) Useful tools for biomolecule isolation, detection, and identification: acylhydrazone-based cleavable linkers. Chem Biol 16(7):763–772. doi:10.1016/j.chembiol.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Dirksen A, Yegneswaran S, Dawson PE (2010) Bisaryl hydrazones as exchangeable biocompatible linkers. Angew Chem Int Ed Engl 49(11):2023–2027. doi:10.1002/anie.200906756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Claessen JH, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL (2013) Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. Chembiochem 14(3):343–352. doi:10.1002/cbic.201200701

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Verhelst SH (2013) Cleavable trifunctional biotin reagents for protein labelling, capture and release. Chem Commun (Camb) 49(47):5366–5368. doi:10.1039/c3cc42076k

    Article  CAS  Google Scholar 

  20. Jahng WJ, David C, Nesnas N, Nakanishi K, Rando RR (2003) A cleavable affinity biotinylating agent reveals a retinoid binding role for RPE65. Biochemistry 42(20):6159–6168. doi:10.1021/bi034002i

    Article  CAS  PubMed  Google Scholar 

  21. Lin D, Li J, Slebos RJ, Liebler DC (2010) Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation. J Proteome Res 9(10):5461–5472. doi:10.1021/pr1007015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sturm M, Leitner A, Lindner W (2011) Development of an indole-based chemically cleavable linker concept for immobilizing bait compounds for protein pull-down experiments. Bioconjug Chem 22(2):211–217. doi:10.1021/bc100330a

    Article  CAS  PubMed  Google Scholar 

  23. Geurink PP, Florea BI, Li N, Witte MD, Verasdonck J, Kuo CL, van der Marel GA, Overkleeft HS (2010) A cleavable linker based on the levulinoyl ester for activity-based protein profiling. Angew Chem Int Ed Engl 49(38):6802–6805. doi:10.1002/anie.201001767

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen PE, Hansen JB, Buchardt O (1984) Photochemical cross-linking of protein and DNA in chromatin. Synthesis and application of a photosensitive cleavable derivative of 9-aminoacridine with two photoprobes connected through a disulphide-containing linker. Biochem J 223(2):519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimkus M, Levy J, Herman T (1985) A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc Natl Acad Sci U S A 82(9):2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ichikawa M, Ichikawa Y (2001) A mechanism-based affinity-labeling agent for possible use in isolating N-acetylglucosaminidase. Bioorg Med Chem Lett 11(13):1769–1773

    Article  CAS  PubMed  Google Scholar 

  27. Gartner CA, Elias JE, Bakalarski CE, Gygi SP (2007) Catch-and-release reagents for broadscale quantitative proteomics analyses. J Proteome Res 6(4):1482–1491. doi:10.1021/pr060605f

    Article  CAS  PubMed  Google Scholar 

  28. Everley PA, Gartner CA, Haas W, Saghatelian A, Elias JE, Cravatt BF, Zetter BR, Gygi SP (2007) Assessing enzyme activities using stable isotope labeling and mass spectrometry. Mol Cell Proteomics 6(10):1771–1777. doi:10.1074/mcp.M700057-MCP200

    Article  CAS  PubMed  Google Scholar 

  29. Verhelst SH, Fonovic M, Bogyo M (2007) A mild chemically cleavable linker system for functional proteomic applications. Angew Chem Int Ed Engl 46(8):1284–1286. doi:10.1002/anie.200603811

    Article  CAS  PubMed  Google Scholar 

  30. Fonovic M, Verhelst SH, Sorum MT, Bogyo M (2007) Proteomics evaluation of chemically cleavable activity-based probes. Mol Cell Proteomics 6(10):1761–1770. doi:10.1074/mcp.M700124-MCP200

    Article  CAS  PubMed  Google Scholar 

  31. Leriche G, Budin G, Brino L, Wagner A (2010) Optimization of the azobenzene scaffold for reductive cleavage by dithionite; development of an azobenzene cleavable linker for proteomic applications. Eur J Org Chem 23:4360–4364. doi:10.1002/ejoc.201000546

    Google Scholar 

  32. Grammel M, Zhang MM, Hang HC (2010) Orthogonal alkynyl amino acid reporter for selective labeling of bacterial proteomes during infection. Angew Chem Int Ed Engl 49(34):5970–5974. doi:10.1002/anie.201002050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landi F, Johansson CM, Campopiano DJ, Hulme AN (2010) Synthesis and application of a new cleavable linker for “click”-based affinity chromatography. Org Biomol Chem 8(1):56–59. doi:10.1039/b916693a

    Article  CAS  PubMed  Google Scholar 

  34. Yang YY, Grammel M, Raghavan AS, Charron G, Hang HC (2010) Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chem Biol 17(11):1212–1222. doi:10.1016/j.chembiol.2010.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang YY, Ascano JM, Hang HC (2010) Bioorthogonal chemical reporters for monitoring protein acetylation. J Am Chem Soc 132(11):3640–3641. doi:10.1021/ja908871t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Battenberg OA, Yang Y, Verhelst SH, Sieber SA (2013) Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Mol Biosyst 9(3):343–351. doi:10.1039/c2mb25446h

    Article  CAS  PubMed  Google Scholar 

  37. Qian Y, Martell J, Pace NJ, Ballard TE, Johnson DS, Weerapana E (2013) An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. Chembiochem 14(12):1410–1414. doi:10.1002/cbic.201300396

    Article  CAS  PubMed  Google Scholar 

  38. Yang Y, Hahne H, Kuster B, Verhelst SH (2013) A simple and effective cleavable linker for chemical proteomics applications. Mol Cell Proteomics 12(1):237–244. doi:10.1074/mcp.M112.021014

    Article  PubMed  Google Scholar 

  39. Maurer A, Zeyher C, Amin B, Kalbacher H (2013) A periodate-cleavable linker for functional proteomics under slightly acidic conditions: application for the analysis of intracellular aspartic proteases. J Proteome Res 12(1):199–207. doi:10.1021/pr300758c

    Article  CAS  PubMed  Google Scholar 

  40. Amore A, Wals K, Koekoek E, Hoppes R, Toebes M, Schumacher TN, Rodenko B, Ovaa H (2013) Development of a hypersensitive periodate-cleavable amino acid that is methionine- and disulfide-compatible and its application in MHC exchange reagents for T cell characterisation. Chembiochem 14(1):123–131. doi:10.1002/cbic.201200540

    Article  CAS  PubMed  Google Scholar 

  41. Wang PF (2013) Photolabile protecting groups: structure and reactivity. Asian J Org Chem 2(6):452–464. doi:10.1002/ajoc.201200197

    Article  CAS  Google Scholar 

  42. Guillier F, Orain D, Bradley M (2000) Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 100(6):2091–2157. doi:10.1021/cr980040+

    Article  CAS  PubMed  Google Scholar 

  43. Orth R, Sieber SA (2009) A photolabile linker for the mild and selective cleavage of enriched biomolecules from solid support. J Org Chem 74(21):8476–8479. doi:10.1021/jo901809k

    Article  CAS  PubMed  Google Scholar 

  44. Kim HY, Tallman KA, Liebler DC, Porter NA (2009) An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Mol Cell Proteomics 8(9):2080–2089. doi:10.1074/mcp.M900121-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carrington JC, Cary SM, Parks TD, Dougherty WG (1989) A second proteinase encoded by a plant potyvirus genome. EMBO J 8(2):365–370

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032. doi:10.1038/13732

    Article  CAS  PubMed  Google Scholar 

  47. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3):218–229. doi:10.1006/meth.2001.1183

    Article  CAS  PubMed  Google Scholar 

  48. Speers AE, Cravatt BF (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 127(28):10018–10019. doi:10.1021/ja0532842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)–a general method for mapping sites of probe modification in proteomes. Nat Protoc 2(6):1414–1425. doi:10.1038/nprot.2007.194

    Article  CAS  PubMed  Google Scholar 

  50. Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103(25):9482–9487. doi:10.1073/pnas.0601637103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M, Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R, Wilkinson AJ, Holder AA, Tate EW (2014) Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 6(2):112–121. doi:10.1038/Nchem.1830

    Article  CAS  PubMed  Google Scholar 

  52. Hashimoto M, Okamoto S, Nabeta K, Hatanaka Y (2004) Enzyme cleavable and biotinylated photoaffinity ligand with diazirine. Bioorg Med Chem Lett 14(10):2447–2450. doi:10.1016/j.bmcl.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  53. Zheng TQ, Jiang H, Wu P (2013) Single-stranded DNA as a cleavable linker for bioorthogonal click chemistry-based proteomics. Bioconjug Chem 24(6):859–864. doi:10.1021/bc400093x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park JJ, Sadakane Y, Masuda K, Tomohiro T, Nakano T, Hatanaka Y (2005) Synthesis of diazirinyl photoprobe carrying a novel cleavable biotin. Chembiochem 6(5):814–818. doi:10.1002/cbic.200400342

    Article  CAS  PubMed  Google Scholar 

  55. Kenner GW, Mcdermot JR, Sheppard RC (1971) Safety catch principle in solid phase peptide synthesis. J Chem Soc Chem Commun 12:636–637. doi:10.1039/c29710000636

    Article  Google Scholar 

  56. Bongo NB, Tomohiro T, Hatanaka Y (2010) Efficient approach for profiling photoaffinity labeled peptides with a cleavable biotinyl photoprobe. Bioorg Med Chem Lett 20(6):1834–1836. doi:10.1016/j.bmcl.2010.01.164

    Article  CAS  PubMed  Google Scholar 

  57. Yokoshima S, Abe Y, Watanabe N, Kita Y, Kan T, Iwatsubo T, Tomita T, Fukuyama T (2009) Development of photoaffinity probes for gamma-secretase equipped with a nitrobenzenesulfonamide-type cleavable linker. Bioorg Med Chem Lett 19(24):6869–6871. doi:10.1016/j.bmcl.2009.10.086

    Article  CAS  PubMed  Google Scholar 

  58. Fukuyama T, Jow CK, Cheung M (1995) 2-Nitrobenzenesulfonamides and 4-nitrobenzenesulfonamides - exceptionally versatile means for preparation of secondary-amines and protection of amines. Tetrahedron Lett 36(36):6373–6374. doi:10.1016/0040-4039(95)01316-A

    Article  CAS  Google Scholar 

  59. Milne SB, Tallman KA, Serwa R, Rouzer CA, Armstrong MD, Marnett LJ, Lukehart CM, Porter NA, Brown HA (2010) Capture and release of alkyne-derivatized glycerophospholipids using cobalt chemistry. Nat Chem Biol 6(3):205–207. doi:10.1038/Nchembio.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tallman KA, Armstrong MD, Milne SB, Marnett LJ, Brown HA, Porter NA (2013) Cobalt carbonyl complexes as probes for alkyne-tagged lipids. J Lipid Res 54(3):859–868. doi:10.1194/jlr.D033332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Egami H, Kamisuki S, Dodo K, Asanuma M, Hamashima Y, Sodeoka M (2011) Catch and release of alkyne-tagged molecules in water by a polymer-supported cobalt complex. Org Biomol Chem 9(22):7667–7670. doi:10.1039/c1ob06123b

    Article  CAS  PubMed  Google Scholar 

  62. Miyazaki A, Asanuma M, Dodo K, Egami H, Sodeoka M (2014) A “catch-and-release” protocol for alkyne-tagged molecules based on a resin-bound cobalt complex for peptide enrichment in aqueous media. Chem-Eur J 20(26):8116–8128. doi:10.1002/chem.201400056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the Chinese Scholarship Council (to Y.Y.), the Slovenian Research Agency (ARRS grant to M.F.), the Deutsche Forschungsgemeinschaft (to S.V.) and the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein- Westfalen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. L. Verhelst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yang, Y., Fonović, M., Verhelst, S.H.L. (2017). Cleavable Linkers in Chemical Proteomics Applications. In: Overkleeft, H., Florea, B. (eds) Activity-Based Proteomics. Methods in Molecular Biology, vol 1491. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6439-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6439-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6437-6

  • Online ISBN: 978-1-4939-6439-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics