CCN Proteins pp 533-542 | Cite as

An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells

  • Takayuki Furumatsu
  • Toshifumi Ozaki
Part of the Methods in Molecular Biology book series (MIMB, volume 1489)


The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.

Key words

CCN2 Meniscus Meniscus cells Mechanical stretch Transcriptional regulation 



We thank Dr. Masaharu Takigawa and Dr. Satoshi Kubota for their kind assistance.


  1. 1.
    Lee SJ, Aadalen KJ, Malaviya P et al (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34:1334–1344CrossRefPubMedGoogle Scholar
  2. 2.
    Beveridge JE, Shrive NG, Frank CB (2011) Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model. J Orthop Res 29:1397–1405CrossRefPubMedGoogle Scholar
  3. 3.
    Berthiaume MJ, Raynauld JP, Martel-Pelletier J et al (2005) Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 64:556–563CrossRefPubMedGoogle Scholar
  4. 4.
    Badlani JT, Borrero C, Golla S et al (2013) The effects of meniscus injury on the development of knee osteoarthritis: data from the osteoarthritis initiative. Am J Sports Med 41:1238–1244CrossRefPubMedGoogle Scholar
  5. 5.
    Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 252:19–31PubMedGoogle Scholar
  6. 6.
    Arnoczky SP, Warren RF (1982) Microvasculature of the human meniscus. Am J Sports Med 10:90–95CrossRefPubMedGoogle Scholar
  7. 7.
    Upton ML, Hennerbichler A, Fermor B et al (2006) Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res 47:207–214CrossRefPubMedGoogle Scholar
  8. 8.
    Furumatsu T, Kanazawa T, Yokoyama Y et al (2011) Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res 52:459–465CrossRefPubMedGoogle Scholar
  9. 9.
    Fujii M, Furumatsu T, Yokoyama Y et al (2013) Chondromodulin-I derived from the inner meniscus prevents endothelial cell proliferation. J Orthop Res 31:538–543CrossRefPubMedGoogle Scholar
  10. 10.
    Nishida T, Maeda A, Kubota S et al (2008) Role of mechanical-stress inducible protein Hcs24/CTGF/CCN2 in cartilage growth and regeneration: mechanical stress induces expression of Hcs24/CTGF/CCN2 in a human chondrocytic cell line HCS-2/8, rabbit costal chondrocytes and meniscus tissue cells. Biorheology 45:289–299PubMedGoogle Scholar
  11. 11.
    Kanazawa T, Furumatsu T, Hachioji M et al (2012) Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J Orthop Res 30:468–474CrossRefPubMedGoogle Scholar
  12. 12.
    Kanazawa T, Furumatsu T, Matsumoto-Ogawa E et al (2014) Role of Rho small GTPases in meniscus cells. J Orthop Res 32:1479–1486CrossRefPubMedGoogle Scholar
  13. 13.
    Shirazi R, Shirazi-Adl A, Hurtig M (2008) Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41:3340–3348CrossRefPubMedGoogle Scholar
  14. 14.
    Kubota S, Takigawa M (2007) Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 257:1–41CrossRefPubMedGoogle Scholar
  15. 15.
    Furumatsu T, Kanazawa T, Miyake Y et al (2012) Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells. J Orthop Res 30:1738–1745CrossRefPubMedGoogle Scholar
  16. 16.
    Miyake Y, Furumatsu T, Kubota S et al (2011) Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells. Biochem Biophys Res Commun 409:247–252CrossRefPubMedGoogle Scholar
  17. 17.
    He W, Liu YJ, Wang ZG et al (2011) Enhancement of meniscal repair in the avascular zone using connective tissue growth factor in a rabbit model. Chin Med J (Engl) 124:3968–3975Google Scholar
  18. 18.
    Lee CH, Rodeo SA, Fortier LA et al (2014) Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med 6:266ra171CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim SG, Akaike T, Sasagaw T et al (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 27:139–144CrossRefPubMedGoogle Scholar
  20. 20.
    Eguchi T, Kubota S, Kondo S et al (2001) Regulatory mechanism of human connective tissue growth factor (CTGF/Hcs24) gene expression in a human chondrocytic cell line, HCS-2/8. J Biochem 130:79–87CrossRefPubMedGoogle Scholar
  21. 21.
    Furumatsu T, Matsumoto E, Kanazawa T et al (2013) Tensile strain increases expression of CCN2 and COL2A1 by activating TGF-β-Smad2/3 pathway in chondrocytic cells. J Biomech 46:1508–1515CrossRefPubMedGoogle Scholar
  22. 22.
    Nishida T, Kubota S, Nakanishi T et al (2002) CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, stimulates proliferation and differentiation, but not hypertrophy of cultured articular chondrocytes. J Cell Physiol 192:55–63CrossRefPubMedGoogle Scholar
  23. 23.
    Furumatsu T, Ozaki T (2010) Epigenetic regulation in chondrogenesis. Acta Med Okayama 64:155–161PubMedGoogle Scholar
  24. 24.
    Verdonk PC, Forsyth RG, Wang J et al (2005) Characterization of human knee meniscus cell phenotype. Osteoarthritis Cartilage 13:548–560CrossRefPubMedGoogle Scholar
  25. 25.
    Muhammad H, Schminke B, Bode C et al (2014) Human migratory meniscus progenitor cells are controlled via the TGF-β pathway. Stem Cell Rep 3:789–803CrossRefGoogle Scholar
  26. 26.
    Furumatsu T, Tsuda M, Taniguchi N et al (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280:8343–8350CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryOkayama University Graduate SchoolOkayamaJapan

Personalised recommendations