ERK Signaling pp 113-126 | Cite as

Single-Step Affinity Purification of ERK Signaling Complexes Using the Streptavidin-Binding Peptide (SBP) Tag

  • Liu Yang
  • Alexey VeraksaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)


Elucidation of biological functions of signaling proteins is facilitated by studying their protein–protein interaction networks. Affinity purification combined with mass spectrometry (AP-MS) has become a favorite method to study protein complexes. Here we describe a procedure for single-step purification of ERK (Rolled) and associated proteins from Drosophila cultured cells. The use of the streptavidin-binding peptide (SBP) tag allows for a highly efficient isolation of native ERK signaling complexes, which are suitable for subsequent analysis by mass spectrometry. Our analysis of the ERK interactome has identified both known and novel signaling components. This method can be easily adapted for SBP-based purification of protein complexes in any expression system.

Key words

Streptavidin-binding peptide SBP Affinity purification Mass spectrometry ERK Drosophila 



This protocol was developed with participation of Manuel Valdes, Marla Tipping, and Wenjian Xu. The authors thank Heya Zhao for helpful comments on the manuscript. A.V. was supported by the NIH grant GM105813. L.Y. was supported by the UMass Boston Sanofi Genzyme Doctoral Fellowship. Mass spectrometry was performed at the Taplin Mass Spectrometry Facility at Harvard Medical School.


  1. 1.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Futran AS, Link AJ, Seger R et al (2013) ERK as a model for systems biology of enzyme kinetics in cells. Curr Biol 23:R972–R979CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Newbern J, Zhong J, Wickramasinghe RS et al (2008) Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci U S A 105:17115–17120CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li WX (2005) Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 232:656–672CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sopko R, Perrimon N (2013) Receptor tyrosine kinases in Drosophila development. Cold Spring Harb Perspect Biol 5(6):a009050CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shilo BZ (2014) The regulation and functions of MAPK pathways in Drosophila. Methods 68:151–159CrossRefPubMedGoogle Scholar
  8. 8.
    Friedman AA, Tucker G, Singh R et al (2011) Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 4(196):rs10PubMedPubMedCentralGoogle Scholar
  9. 9.
    von Kriegsheim A, Baiocchi D, Birtwistle M et al (2009) Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol 11:1458–1464CrossRefGoogle Scholar
  10. 10.
    Gavin AC, Maeda K, Kühner S (2011) Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol 22:42–49CrossRefPubMedGoogle Scholar
  11. 11.
    Veraksa A (2013) Regulation of developmental processes: insights from mass spectrometry-based proteomics. Wiley Interdiscip Rev Dev Biol 2:723–734CrossRefPubMedGoogle Scholar
  12. 12.
    Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032CrossRefPubMedGoogle Scholar
  13. 13.
    Veraksa A, Bauer A, Artavanis-Tsakonas S (2005) Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Dev Dyn 232:827–834CrossRefPubMedGoogle Scholar
  14. 14.
    Burckstummer T, Bennett KL, Preradovic A et al (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019CrossRefPubMedGoogle Scholar
  15. 15.
    Kyriakakis P, Tipping M, Abed L et al (2008) Tandem affinity purification in Drosophila: the advantages of the GS-TAP system. Fly (Austin) 2:229–235CrossRefGoogle Scholar
  16. 16.
    Keefe AD, Wilson DS, Seelig B et al (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23:440–446CrossRefPubMedGoogle Scholar
  17. 17.
    Gilbert MM, Tipping M, Veraksa A et al (2011) A screen for conditional growth suppressor genes identifies the Drosophila homolog of HD-PTP as a regulator of the oncoprotein Yorkie. Dev Cell 20:700–712CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dent LG, Poon CL, Zhang X et al (2014) The GTPase regulatory proteins pix and git control tissue growth via the Hippo pathway. Curr Biol 25(1):124–130CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang C, Robinson BS, Xu W et al (2015) The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell 34:168–180CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim JH, Chang TM, Graham AN et al (2010) Streptavidin-binding peptide (SBP)-tagged SMC2 allows single-step affinity fluorescence, blotting or purification of the condensin complex. BMC Biochem 11:50CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Choi H, Larsen B, Lin ZY et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8:70–73CrossRefPubMedGoogle Scholar
  22. 22.
    Kwon Y, Vinayagam A, Sun X et al (2013) The Hippo signaling pathway interactome. Science 342:737–740CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang L, Veraksa A (2015) SAINT output for a complete ERK-SBP purification dataset. Accessed 10 Dec 2015
  24. 24.
    Rintelen F, Hafen E, Nairz K (2003) The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 130:3479–3490CrossRefPubMedGoogle Scholar
  25. 25.
    Jimenez G, Shvartsman SY, Paroush Z (2012) The Capicua repressor—a general sensor of RTK signaling in development and disease. J Cell Sci 125:1383–1391CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Massachusetts BostonBostonUSA

Personalised recommendations