Advertisement

ERK Signaling pp 353-365 | Cite as

Using CRISPR-Cas9 to Study ERK Signaling in Drosophila

  • Marta Forés
  • Aikaterini Papagianni
  • Laura Rodríguez-Muñoz
  • Gerardo JiménezEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

Genome engineering using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated nuclease 9 (Cas9) technology is revolutionizing biomedical research. CRISPR-Cas9 enables precise editing of genes in a wide variety of cells and organisms, thereby accelerating molecular studies via targeted mutagenesis, epitope tagging, and other custom genetic modifications. Here, we illustrate the CRISPR-Cas9 methodology by focusing on Capicua (Cic), a nuclear transcriptional repressor directly phosphorylated and inactivated by ERK/MAPK. Specifically, we use CRISPR-Cas9 for targeting an ERK docking site of Drosophila Cic, thus generating ERK-insensitive mutants of this important signaling sensor.

Key words

CRISPR Cas9 RTK signaling ERK MAPK Capicua Docking site Drosophila 

Notes

Acknowledgments

We thank A. Olza for Drosophila injections, N. Samper for experimental support, and F. Port, S. González-Crespo, Z. Paroush, M. Ruiz-Gómez, and A. Veraksa for discussions. This work was funded by grants from the Spanish Ministry of Science and Innovation (BFU2014-52863-P) and Fundació La Marató de TV3 (20131730). G.J. is an ICREA investigator.

References

  1. 1.
    Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mojica FJM, Díez-Villaseñor C, García-Martínez J et al (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182CrossRefPubMedGoogle Scholar
  5. 5.
    Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  7. 7.
    Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. eLife 2:e00471CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cho SW, Kim S, Kim JM et al (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232CrossRefPubMedGoogle Scholar
  12. 12.
    Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Anders C, Niewoehner O, Duerst A et al (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44CrossRefPubMedGoogle Scholar
  16. 16.
    Yang L, Güell M, Niu D et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104CrossRefPubMedGoogle Scholar
  17. 17.
    Gantz VM, Bier E (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–444CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951CrossRefPubMedGoogle Scholar
  19. 19.
    Gratz SJ, Cummings AM, Nguyen JN et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bassett AR, Tibbit C, Ponting CP et al (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kondo S, Ueda R (2013) Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195:715–721CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yu Z, Ren M, Wang Z et al (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195: 289–291CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ren X, Sun J, Housden BE et al (2013) Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 110:19012–19017CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gratz SJ, Ukken FP, Rubinstein CD et al (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Port F, Chen HM, Lee T et al (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111:E2967–E2976CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiménez G, Shvartsman SY, Paroush Z (2012) The Capicua repressor – a general sensor of RTK signaling in development and disease. J Cell Sci 125:1383–1391CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Astigarraga S, Grossman R, Díaz‐Delfín J et al (2007) A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J 26:668–677CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Andreu MJ, Ajuria L, Samper N et al (2012) EGFR-dependent downregulation of Capicua and the establishment of Drosophila dorsoventral polarity. Fly 6:234–239CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiménez G, Guichet A, Ephrussi A et al (2000) Relief of gene repression by Torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev 14:224–231PubMedPubMedCentralGoogle Scholar
  30. 30.
    Goff DJ, Nilson LA, Morisato D (2001) Establishment of dorsal-ventral polarity of the Drosophila egg requires capicua action in ovarian follicle cells. Development 128:4553–4562PubMedGoogle Scholar
  31. 31.
    Roch F, Jiménez G, Casanova J (2002) EGFR signalling inhibits Capicua-dependent repression during specification of Drosophila wing veins. Development 129:993–1002PubMedGoogle Scholar
  32. 32.
    Tseng ASK, Tapon N, Kanda H et al (2007) Capicua regulates cell proliferation downstream of the receptor tyrosine kinase/Ras signaling pathway. Curr Biol 17:728–733CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bischof J, Maeda RK, Hediger M et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc Natl Acad Sci U S A 104:3312–3317CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Berg CA (2005) The Drosophila shell game: patterning genes and morphological change. Trends Genet 21:346–355CrossRefPubMedGoogle Scholar
  35. 35.
    Cheung LS, Schüpbach T, Shvartsman SY (2011) Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis. Curr Opin Genet Dev 21:719–725CrossRefPubMedGoogle Scholar
  36. 36.
    Atkey MR, Boisclair Lachance JF, Walczak M et al (2006) Capicua regulates follicle cell fate in the Drosophila ovary through repression of mirror. Development 133:2115–2123CrossRefPubMedGoogle Scholar
  37. 37.
    Schüpbach T (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49:699–707CrossRefPubMedGoogle Scholar
  38. 38.
    Ajuria L, Nieva C, Winkler C et al (2011) Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila. Development 138:915–924CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Garcia M, Stathopoulos A (2011) Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression. PLoS One 6:e29172CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lim B, Samper N, Lu H et al (2013) Kinetics of gene derepression by ERK signaling. Proc Natl Acad Sci U S A 110:10330–10335CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ren X, Yang Z, Xu J et al (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9:1151–1162CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Marx V (2014) Gene editing: how to stay on-target with CRISPR. Nat Methods 11:1021–1026CrossRefGoogle Scholar
  43. 43.
    Lam YC, Bowman AB, Jafar-Nejad P et al (2006) ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127:1335–1347CrossRefPubMedGoogle Scholar
  44. 44.
    Forés M, Ajuria L, Samper N et al (2015) Origins of context-dependent gene repression by Capicua. PLoS Genet 11:e1004902CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Neuman-Silberberg FS, Schupbach T (1994) Dorsoventral axis formation in Drosophila depends on the correct dosage of the gene gurken. Development 120:2457–2463PubMedGoogle Scholar
  46. 46.
    Boisclair Lachance JF, Fregoso Lomas M, Eleiche A et al (2009) Graded Egfr activity patterns the Drosophila eggshell independently of autocrine feedback. Development 136: 2893–2902CrossRefPubMedGoogle Scholar
  47. 47.
    Zartman JJ, Kanodia JS, Cheung LS et al (2009) Feedback control of the EGFR signaling gradient: superposition of domain-splitting events in Drosophila oogenesis. Development 136:2903–2911CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jin Y, Ha N, Forés M et al (2015) EGFR/Ras signaling controls Drosophila intestinal stem cell proliferation via Capicua-regulated genes. PLoS Genet 11:e1005634CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stathopoulos A, Levine M (2005) Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. Dev Biol 280:482–493CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Marta Forés
    • 1
  • Aikaterini Papagianni
    • 1
  • Laura Rodríguez-Muñoz
    • 1
  • Gerardo Jiménez
    • 1
    • 2
    Email author
  1. 1.Institut de Biologia Molecular de Barcelon-CSICParc Cientific de BarcelonaBarcelonaSpain
  2. 2.ICREABarcelonaSpain

Personalised recommendations