ERK Signaling pp 317-335 | Cite as

Discovering Functional ERK Substrates Regulating Caenorhabditis elegans Germline Development

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

The Rat Sarcoma (RAS) GTPAse-mediated extracellular signal-regulated kinase (ERK) pathway regulates multiple biological processes across metazoans. In particular during Caenorhabditis elegans oogenesis, ERK signaling has been shown to regulate over seven distinct biological processes in a temporal and sequential manner. To fully elucidate how ERK signaling cascade orchestrates these different biological processes in vivo, identification of the direct functional substrates of the pathway is critical. This chapter describes the methods that were used to identify ERK substrates in a global manner and study their functions in the germline. These approaches can also be generally applied to study ERK-dependent biological processes in other systems.

Key words

C. elegans oogenesis ERK substrates Functional genomics 

References

  1. 1.
    Chen Z, Gibson TB, Robinson F et al (2001) MAP kinases. Chem Rev 101:2449–2476CrossRefPubMedGoogle Scholar
  2. 2.
    Caunt CJ, Finch AR, Sedgley KR et al (2006) Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 17:276–283CrossRefPubMedGoogle Scholar
  3. 3.
    Ku H, Meier KE (2000) Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells. J Biol Chem 275:11333–11340CrossRefPubMedGoogle Scholar
  4. 4.
    Gille H, Kortenjann M, Thomae O et al (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14:951–962PubMedPubMedCentralGoogle Scholar
  5. 5.
    Moghal N, Sternberg PW (2003) The epidermal growth factor system in Caenorhabditis elegans. Exp Cell Res 284:150–159CrossRefPubMedGoogle Scholar
  6. 6.
    Blalock WL, Weinstein-Oppenheimer C, Chang F et al (1999) Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 13:1109–1166CrossRefPubMedGoogle Scholar
  7. 7.
    Geijsen N, Koenderman L, Coffer PJ (2001) Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family. Cytokine Growth Factor Rev 12:19–25CrossRefPubMedGoogle Scholar
  8. 8.
    McCubrey JA, Steelman LS, Hoyle PE et al (1998) Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 12:1903–1929CrossRefPubMedGoogle Scholar
  9. 9.
    Kratz CP, Schubbert S, Bollag G et al (2006) Germline mutations in components of the Ras signaling pathway in Noonan syndrome and related disorders. Cell Cycle 5:1607–1611CrossRefPubMedGoogle Scholar
  10. 10.
    Mercer KE, Pritchard CA (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 1653:25–40PubMedGoogle Scholar
  11. 11.
    Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22CrossRefPubMedGoogle Scholar
  12. 12.
    Yang SH, Whitmarsh AJ, Davis RJ et al (1998) Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 17:1740–1749CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sharrocks AD, Yang SH, Galanis A (2000) Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25:448–453CrossRefPubMedGoogle Scholar
  14. 14.
    Smith JA, Poteet-Smith CE, Malarkey K et al (1999) Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem 274:2893–2898CrossRefPubMedGoogle Scholar
  15. 15.
    Biondi RM, Nebreda AR (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jacobs D, Glossip D, Xing H et al (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13:163–175CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhan XL, Guan KL (1999) A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Genes Dev 13:2811–2827CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin HY, Zhang S, West BL et al (2003) Identification of the putative MAP kinase docking site in the thyroid hormone receptor-beta1 DNA-binding domain: functional consequences of mutations at the docking site. Biochemistry 42:7571–7579CrossRefPubMedGoogle Scholar
  19. 19.
    Fantz DA, Jacobs D, Glossip D et al (2001) Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J Biol Chem 276:27256–27265CrossRefPubMedGoogle Scholar
  20. 20.
    Enslen H, Davis RJ (2001) Regulation of MAP kinases by docking domains. Biol Cell 93:5–14CrossRefPubMedGoogle Scholar
  21. 21.
    Arur S, Ohmachi M, Nayak S et al (2009) Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc Natl Acad Sci U S A 106:4776–4781CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hubbard EJ, Greenstein D (2000) The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn 218:2–22CrossRefPubMedGoogle Scholar
  23. 23.
    Lackner MR, Kornfeld K, Miller LM et al (1994) A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev 8:160–173CrossRefPubMedGoogle Scholar
  24. 24.
    Wu Y, Han M (1994) Suppression of activated Let-60 ras protein defines a role of Caenorhabditis elegans Sur-1 MAP kinase in vulval differentiation. Genes Dev 8: 147–159CrossRefPubMedGoogle Scholar
  25. 25.
    Sundaram MV (2006) RTK/Ras/MAPK signaling. WormBook 2006:1–19Google Scholar
  26. 26.
    Hansen D, Schedl T (2006) The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 76: 185–215CrossRefPubMedGoogle Scholar
  27. 27.
    Miller MA, Nguyen VQ, Lee MH et al (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291:2144–2147CrossRefPubMedGoogle Scholar
  28. 28.
    Reinke V, Smith HE, Nance J et al (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6:605–616CrossRefPubMedGoogle Scholar
  29. 29.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183PubMedGoogle Scholar
  31. 31.
    Songyang Z, Lu KP, Kwon YT et al (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16:6486–6493CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tang HY, Lin HY, Zhang S et al (2004) Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145:3265–3272CrossRefPubMedGoogle Scholar
  33. 33.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  34. 34.
    Jacobs D, Beitel GJ, Clark SG et al (1998) Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics 149: 1809–1822PubMedPubMedCentralGoogle Scholar
  35. 35.
    Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187CrossRefPubMedGoogle Scholar
  36. 36.
    Lee MH, Ohmachi M, Arur S et al (2007) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177:2039–2062CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lopez AL 3rd, Chen J, Joo HJ et al (2013) DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis. Dev Cell 27:227–240CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.The University of Texas Graduate School of Biomedical SciencesHoustonUSA
  2. 2.Department of GeneticsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations