Skip to main content

Analyzing pERK Activation During Planarian Regeneration

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

Planarians are an ideal model in which to study stem cell-based regeneration. After amputation, planarian pluripotent stem cells surrounding the wound proliferate to produce the regenerative blastema, in which they differentiate into the missing tissues and structures. Recent independent studies in planarians have shown that Smed-egfr-3, a gene encoding a homologue of epidermal growth factor (EGF) receptors, and DjerkA, which encodes an extracellular signal-regulated kinase (ERK), may control cell differentiation and blastema growth. However, because these studies were carried in two different planarian species, the relationship between these two genes remains unclear. We have optimized anti-pERK immunostaining in Schmidtea mediterranea using the original protocol developed in Dugesia japonica. Both protocols are reported here as most laboratories worldwide work with one of these two species. Using this protocol we have determined that Smed-egfr-3 appears to be necessary for pERK activation during planarian regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hancock JT (2005) Cell signaling. Oxford University Press, Oxford

    Google Scholar 

  2. Sánchez-Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7:873–884

    Article  PubMed  Google Scholar 

  3. Newmark PA, Sánchez-Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    Article  CAS  PubMed  Google Scholar 

  4. Agata K (2003) Regeneration and gene regulation in planarians. Curr Opin Genet Dev 13:492–496

    Article  CAS  PubMed  Google Scholar 

  5. Reddien PW, Sánchez-Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757

    Article  CAS  PubMed  Google Scholar 

  6. Saló E (2006) The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28:546–559

    Article  PubMed  Google Scholar 

  7. Cebrià F, Adell T, Saló E (2010) Regenerative medicine: lessons from planarians. In: Singh SR (ed) Stem cells, regenerative medicine and cancer. Nova, New York, NY, pp 29–68

    Google Scholar 

  8. Dalyell JG (1814) Observations on some interesting phenomena in animal physiology, exhibited by several species of Planariae. Illustrated by coloured figures of living animals. Archibald Constable, London

    Book  Google Scholar 

  9. Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem-cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  10. Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  CAS  PubMed  Google Scholar 

  11. Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baguñà J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56:19–37

    Article  PubMed  Google Scholar 

  13. Rink JC (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol 223:67–84

    Article  PubMed  Google Scholar 

  14. Gurley KA, Rink JC, Sánchez Alvarado A (2008) Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327

    Article  CAS  PubMed  Google Scholar 

  15. Iglesias M, Gómez-Skarmeta JL, Saló E et al (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135:1215–1221

    Article  CAS  PubMed  Google Scholar 

  16. Petersen CP, Reddien PW (2008) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330

    Article  CAS  PubMed  Google Scholar 

  17. Rink JC, Gurley KA, Elliott SA et al (2009) Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326:1406–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yazawa S, Umesono Y, Hayashi T et al (2009) Planarian Hedgehog/Patched establishes anterior-posterior polarity by regukating Wnt signaling. Proc Natl Acad Sci U S A 106:22329–22334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orii H, Watanabe K (2007) Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Dev Growth Differ 49:345–349

    Article  CAS  PubMed  Google Scholar 

  20. Reddien PW, Bermange AL, Kicza AM et al (2007) BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134:4043–4051

    Article  CAS  PubMed  Google Scholar 

  21. Molina MD, Saló E, Cebrià F (2007) The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311:79–94

    Article  CAS  PubMed  Google Scholar 

  22. Gaviño MA, Reddien PW (2011) A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorso-ventral polarity in planarians. Curr Biol 21:294–299

    Article  PubMed  PubMed Central  Google Scholar 

  23. Molina MD, Neto A, Maeso I et al (2011) Noggin and noggin-like genes control dorsoventral axis regeneration in planarians. Curr Biol 21:300–305

    Article  CAS  PubMed  Google Scholar 

  24. Cebrià F, Kobayashi C, Umesono Y et al (2002) nou-darake, a novel gene related to FGF receptors is involved in restricting brain tissues to the head region of planarians. Nature 419:620–624

    Article  PubMed  Google Scholar 

  25. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  26. Haley JD, Gullick WJ (2009) EGFR signaling networks in cancer therapy. Humana, New York, NY

    Google Scholar 

  27. Osaki LH, Figuereido PM, Alvares EP et al (2011) EGFR is involved in control of gastric cell proliferation through activation of MAPK and Src signaling pathways in early-weaned rats. Cell Prolif 44:174–182

    Article  CAS  PubMed  Google Scholar 

  28. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310

    Article  CAS  PubMed  Google Scholar 

  29. Walker F, Kato A, Gonez LJ et al (1998) Activation of the Ras/Mitogen-Activated protein kinase pathway by kinase-defective Epidermal Growth factor Receptors results in cell survival but not proliferation. Mol Cell Biol 18:7192–7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dent P (2014) Crosstalk between ERK, AKT, and cell survival. Cancer Biol Ther 15:245–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geiger JA, Carvalho L, Campos I et al (2011) Hole-in-one mutant phenotypes link EGFR/ERK signaling to epithelial tissue repair in Drosophila. PLoS One 6, e28349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lowenstein EJ, Daly RJ, Batzer AG et al (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442

    Article  CAS  PubMed  Google Scholar 

  33. Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556

    CAS  PubMed  Google Scholar 

  34. Dang H, Elliott JJ, Lin AL et al (2008) Mitogen-activated protein kinase up-regulation and activation during rat parotid gland atrophy and regeneration: role of epidermal growth factor and beta2-adrenergic receptors. Differentiation 76:546–557

    Article  CAS  PubMed  Google Scholar 

  35. Georgopoulos NT, Kirkwood LA, Southgate J (2014) A novel bidirectional positive-feedback loop between Wnt-β-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. J Cell Sci 127:2967–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fraguas S, Barberán S, Cebrià F (2011) EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev Biol 354: 87–101

    Article  CAS  PubMed  Google Scholar 

  37. Rink JC, Vu HT, Sánchez Alvarado A (2011) The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development 138:3769–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barberán S, Martín-Durán JM, Cebrià F (2016) Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea. Scientific Reports 6:28071 doi:10.1038/srep28071

  39. Freeman M (1997) Cell determination strategies in the Drosophila eye. Development 124:261–270

    CAS  PubMed  Google Scholar 

  40. Nagaraj R, Banerjee U (2007) Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 134:825–831

    Article  CAS  PubMed  Google Scholar 

  41. Barberán S, Fraguas S, Cebrià F (2016) The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development 143:2089–2102

    Google Scholar 

  42. Tasaki J, Shibata N, Nishimura O et al (2011) ERK signaling controls blastema cell differentiation during planarian regeneration. Development 138:2417–2427

    Article  CAS  PubMed  Google Scholar 

  43. Fraguas S, Barberán S, Iglesias M et al (2014) egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development 141:1835–1847

    Article  CAS  PubMed  Google Scholar 

  44. Umesono Y, Tasaki J, Nishimura Y et al (2013) The molecular logic for planarian regeneration along the anterior-posterior axis. Nature 500: 73–76

    Article  CAS  PubMed  Google Scholar 

  45. Rojas-Muñoz A, Rajadhyksha S, Gilmour D et al (2008) ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. Dev Biol 327:177–190

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Owen Howard for advice on English style. F.C. is supported by grants BFU2012-31701 and BFU2015-65704-P from Ministerio de Economía y Competitividad/FEDER (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Cebrià .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fraguas, S., Umesono, Y., Agata, K., Cebrià, F. (2017). Analyzing pERK Activation During Planarian Regeneration. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics