Advertisement

ERK Signaling pp 255-267 | Cite as

3D Organotypic Culture Model to Study Components of ERK Signaling

  • Athina-Myrto ChioniEmail author
  • Rabia Tayba Bajwa
  • Richard Grose
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

Organotypic models are 3D in vitro representations of an in vivo environment. Their complexity can range from an epidermal replica to the establishment of a cancer microenvironment. These models have been used for many years, in an attempt to mimic the structure and function of cells and tissues found inside the body. Methods for developing 3D organotypic models differ according to the tissue of interest and the experimental design. For example, cultures may be grown submerged in culture medium and or at an air–liquid interface. Our group is focusing on an air–liquid interface 3D organotypic model. These cultures are grown on a nylon membrane-covered metal grid with the cells embedded in a Collagen-Matrigel gel. This allows cells to grow in an air–liquid interface to enable diffusion and nourishment from the medium below. Subsequently, the organotypic cultures can be used for immunohistochemical staining of various components of ERK signaling, which is a key player in mediating communication between cells and their microenvironment.

Key words

Organotypic culture 3D models Tissue culture 

Notes

Acknowledgement

We would like to thank Miss Chandy Bundy for Fig. 1, which was part of her M.Sc. project under Dr. Chioni’s supervision.

References

  1. 1.
    Benbrook D (2006) Organotypic cultures represent tumor microenvironment for drug testing. Drug Discov Today 3:143–148CrossRefGoogle Scholar
  2. 2.
    van der Worp HB, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLoS Med 7, e1000245CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coleman SJ, Chioni AM, Ghallab M et al (2014) Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med 6:467–481CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chioni AM, Grose R (2008) Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis. Fibrogenesis Tissue Repair 1:8CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Freeman AE, Igel HJ, Herrman BJ et al (1976) Growth and characterization of human skin epithelial cell cultures. In Vitro 12:352–362CrossRefPubMedGoogle Scholar
  6. 6.
    Regnier M, Pautrat G, Pauly G et al (1984) Natural substrates for the reconstruction of skin in vitro. Br J Dermatol 111(Suppl 27):223–224CrossRefPubMedGoogle Scholar
  7. 7.
    Boelsma E, Gibbs S, Faller C et al (2000) Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 80:82–88PubMedGoogle Scholar
  8. 8.
    Gangatirkar P, Paquet-Fifield S, Li A et al (2007) Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat Protoc 2:178–186CrossRefPubMedGoogle Scholar
  9. 9.
    Duval JL, Dinis T, Vidal G et al (2014) Organotypic culture to assess cell adhesion, growth and alignment of different organs on silk fibroin. J Tissue Eng Regen Med. doi:10.1002/term.1916Google Scholar
  10. 10.
    Margulis A, Zhang W, Garlick JA (2005) In vitro fabrication of engineered human skin. Methods Mol Biol 289:61–70PubMedGoogle Scholar
  11. 11.
    Stark HJ, Szabowski A, Fusenig NE et al (2004) Organotypic cocultures as skin equivalents: a complex and sophisticated in vitro system. Biol Proceed Online 6:55–60CrossRefGoogle Scholar
  12. 12.
    Barker CL, McHale MT, Gillies AK et al (2004) The development and characterization of an in vitro model of psoriasis. J Invest Dermatol 123:892–901CrossRefPubMedGoogle Scholar
  13. 13.
    Ridky TW, Chow JM, Wong DJ et al (2010) Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med 16:1450–1455CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Holliday DL, Hughes S, Shaw JA et al (2007) Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion. Breast Cancer Res 9:R67CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Luqmani YA, Graham M, Coombes RC (1992) Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer 66:273–280CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meyers C (2002) Epithelial cell culture: three dimensional cervical system. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic, San Diego, CA, pp 263–264Google Scholar
  17. 17.
    Gregoire L, Munkarah A, Rabah R et al (1998) Organotypic culture of human ovarian surface epithelial cells: a potential model for ovarian carcinogenesis. In Vitro Cell Dev Biol Anim 34:636–639CrossRefPubMedGoogle Scholar
  18. 18.
    Quiros RM, Valianou M, Kwon Y et al (2008) Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol Oncol 110:99–109CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Papini S, Rosellini A, De Matteis A et al (2007) Establishment of an organotypic in vitro culture system and its relevance to the characterization of human prostate epithelial cancer cells and their stromal interactions. Pathol Res Pract 203:209–216CrossRefPubMedGoogle Scholar
  20. 20.
    Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nguyen-Ngoc KV, Shamir ER, Huebner RJ et al (2015) 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol Biol 1189:135–162CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shamir ER, Ewald AJ (2015) Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr Top Dev Biol 112:353–382CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Froeling FE, Marshall JF, Kocher HM (2010) Pancreatic cancer organotypic cultures. J Biotechnol 148:16–23CrossRefPubMedGoogle Scholar
  24. 24.
    Chioni AM, Grose R (2012) FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. J Cell Biol 197:801–817CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5:675–688CrossRefPubMedGoogle Scholar
  26. 26.
    Nelson CM, Bissell MJ (2005) Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 15:342–352CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Holliday DL, Brouilette KT, Markert A et al (2009) Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 11:R3CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Westcott JM, Prechtl AM, Maine EA et al (2015) An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest 125:1927–1943CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jeon JS, Bersini S, Gilardi M et al (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112:214–219CrossRefPubMedGoogle Scholar
  30. 30.
    White EA, Kenny HA, Lengyel E (2014) Three-dimensional modeling of ovarian cancer. Adv Drug Deliv Rev 79–80:184–192CrossRefPubMedGoogle Scholar
  31. 31.
    Lengyel E, Burdette JE, Kenny HA et al (2014) Epithelial ovarian cancer experimental models. Oncogene 33:3619–3633CrossRefPubMedGoogle Scholar
  32. 32.
    Kenny HA, Dogan S, Zillhardt M et al (2009) Organotypic models of metastasis: A three-dimensional culture mimicking the human peritoneum and omentum for the study of the early steps of ovarian cancer metastasis. Cancer Treat Res 149:335–351CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kenny HA, Lal-Nag M, White EA et al (2014) Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun 6:6220CrossRefGoogle Scholar
  34. 34.
    Hjelm BE, Berta AN, Nickerson CA et al (2010) Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 82:617–627CrossRefPubMedGoogle Scholar
  35. 35.
    Carlson MW, Iyer VR, Marcotte EM (2007) Quantitative gene expression assessment identifies appropriate cell line models for individual cervical cancer pathways. BMC Genomics 8:117CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jacobs N, Moutschen MP, Franzen-Detrooz E et al (1998) Organotypic culture of HPV-transformed keratinocytes: a model for testing lymphocyte infiltration of (pre)neoplastic lesions of the uterine cervix. Virchows Arch 432:323–330CrossRefPubMedGoogle Scholar
  37. 37.
    Benbrook DM, Rogers RS, Medlin MA et al (1995) Immunohistochemical analysis of proliferation and differentiation in organotypic cultures of cervical tumor cell lines. Tissue Cell 27:269–274CrossRefPubMedGoogle Scholar
  38. 38.
    Corson LB, Yamanaka Y, Lai KM et al (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537CrossRefPubMedGoogle Scholar
  39. 39.
    Uehling DE, Harris PA (2015) Recent progress on MAP kinase pathway inhibitors. Bioorg Med Chem Lett 25:4047–4056CrossRefPubMedGoogle Scholar
  40. 40.
    Coleman SJ, Watt J, Arumugam P et al (2014) Pancreatic cancer organotypics: High throughput, preclinical models for pharmacological agent evaluation. World J Gastroenterol 20:8471–8481CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Athina-Myrto Chioni
    • 1
    Email author
  • Rabia Tayba Bajwa
    • 1
  • Richard Grose
    • 2
  1. 1.Biomolecular Sciences Department, School of Life Sciences, Pharmacy and ChemistryKingston Univesity LondonKingston Upon Thames, SurreyUK
  2. 2.Barts Cancer InstituteQueen Mary University of LondonLondonUK

Personalised recommendations