Advertisement

ERK Signaling pp 195-201 | Cite as

Visualization of RAS/MAPK Signaling In Situ by the Proximity Ligation Assay (PLA)

  • Zijian Tang
  • Chengkai DaiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

RAS/MAPK signaling responds to diverse extracellular cues and regulates a wide array of cellular processes. Given its biological importance, abnormalities in RAS/MAPK signaling cascade have been intimately implicated in numerous human diseases, including cancer. Herein, we describe a novel methodology to study activation of this pivotal signaling pathway. The Proximity Ligation Assay (PLA) is employed to monitor kinase–substrate interactions between MEK1 and HSF1, or MEK1 and ERK1 in situ.

Key words

ERK Fluorescence imaging HSF1 MAPK signaling MEK PLA 

References

  1. 1.
    Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480CrossRefPubMedGoogle Scholar
  2. 2.
    Alessi DR, Saito Y, Campbell DG et al (1994) Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 13:1610–1619PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosen LB, Ginty DD, Weber MJ et al (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207–1221CrossRefPubMedGoogle Scholar
  4. 4.
    Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64:755–763CrossRefPubMedGoogle Scholar
  5. 5.
    McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284CrossRefPubMedGoogle Scholar
  6. 6.
    Butch ER, Guan KL (1996) Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2. J Biol Chem 271:4230–4235CrossRefPubMedGoogle Scholar
  7. 7.
    Peng S, Zhang Y, Zhang J et al (2010) ERK in learning and memory: a review of recent research. Int J Mol Sci 11:222–232CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Caunt CJ, Sale MJ, Smith PD et al (2015) MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 15:577–592CrossRefPubMedGoogle Scholar
  9. 9.
    Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16:281–298CrossRefPubMedGoogle Scholar
  10. 10.
    Morris EJ, Jha S, Restaino CR et al (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3:742–750CrossRefPubMedGoogle Scholar
  11. 11.
    Tang Z, Dai S, He Y et al (2015) MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160:729–744CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Eberle AB, Jordan-Pla A, Ganez-Zapater A et al (2015) An interaction between RRP6 and SU(VAR)3-9 targets RRP6 to heterochromatin and contributes to heterochromatin maintenance in Drosophila melanogaster. PLoS Genet 11, e1005523CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Taura J, Fernandez-Duenas V, Ciruela F (2015) Visualizing G protein-coupled receptor-receptor interactions in brain using proximity ligation in situ assay. Curr Protoc Cell Biol 67:17PubMedGoogle Scholar
  14. 14.
    Ulke-Lemee A, Turner SR, MacDonald JA (2015) In situ analysis of Smoothelin-like 1 and Calmodulin interactions in smooth muscle cells by proximity ligation. J Cell Biochem 116:2667–2675CrossRefPubMedGoogle Scholar
  15. 15.
    Gan N, Wu YC, Brunet M et al (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285:35528–35536CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ammirante M, Rosati A, Gentilella A et al (2008) The activity of hsp90 alpha promoter is regulated by NF-kappa B transcription factors. Oncogene 27:1175–1178CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar MA, Nair M, Hema PS et al (2007) Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog 46:231–241CrossRefPubMedGoogle Scholar
  18. 18.
    Mohan J, Gandhi AA, Bhavya BC et al (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281:17599–17611CrossRefPubMedGoogle Scholar
  19. 19.
    Hartsough EJ, Basile KJ, Aplin AE (2014) Beneficial effects of RAF inhibitor in mutant BRAF splice variant-expressing melanoma. Mol Cancer Res 12:795–802CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kundumani-Sridharan V, Singh NK, Kumar S et al (2013) Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling. J Biol Chem 288:22150–22162CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grewe B, Hoffmann B, Ohs I et al (2012) Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag. J Virol 86:2990–3002CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Singh NK, Kundumani-Sridharan V, Kumar S et al (2012) Protein kinase N1 is a novel substrate of NFATc1-mediated cyclin D1-CDK6 activity and modulates vascular smooth muscle cell division and migration leading to inward blood vessel wall remodeling. J Biol Chem 287:36291–36304CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pathria G, Wagner C, Wagner SN (2012) Inhibition of CRM1-mediated nucleocytoplasmic transport: triggering human melanoma cell apoptosis by perturbing multiple cellular pathways. J Invest Dermatol 132:2780–2790CrossRefPubMedGoogle Scholar
  24. 24.
    Bondzi C, Grant S, Krystal GW (2000) A novel assay for the measurement of Raf-1 kinase activity. Oncogene 19:5030–5033CrossRefPubMedGoogle Scholar
  25. 25.
    Yang P, An H, Liu X et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11:487–494CrossRefPubMedGoogle Scholar
  26. 26.
    Miyaji M, Kortum RL, Surana R et al (2009) Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc Natl Acad Sci U S A 106:14502–14507CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gray MJ, Van Buren G, Dallas NA et al (2008) Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 100:109–120CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.The Jackson LaboratoryBar HarborUSA
  2. 2.Graduate Programs, Department of Molecular and Biomedical SciencesThe University of MaineOronoUSA

Personalised recommendations