Advertisement

ERK Signaling pp 175-194 | Cite as

The Nuclear Translocation of ERK

  • Denise A. Berti
  • Rony SegerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

The ERK1 and ERK2 (ERK1/2) cascade is a central signaling pathway activated by a wide variety of extracellular agents that transmit the messages of G Protein Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Being such a central pathway, the activity of the cascade is well regulated, including by dynamic changes of the subcellular localization of components of the ERK1/2 cascade. In resting cells, ERK1/2 are localized in the cytosol due to their interactions with different anchoring proteins. After stimulation, ERK1/2 are phosphorylated by MEK1/2 on their regulatory TEY motif, which permits their detachment from the anchoring proteins. This detachment exposes ERK1/2 to additional phosphorylation on two serine residues (SPS motif) within the nuclear translocation signal (NTS) of the kinases. This additional phosphorylation allows ERK1/2 to interact with importin7, which consequently promotes their translocation to the nucleus. More studies are still required in order to better understand the mechanism and consequence of the nuclear translocation of ERK1/2. In this chapter, we describe some of the techniques used to study nuclear translocation of ERK1/2 in mammalian cells. We briefly mention methods such as digitonin permeabilization and cellular fractionation, as well as overexpression of reporter constructs. More thoroughly, we describe immunofluorescence, immunoprecipitation, and proximity ligation assay (PLA) approaches that are routinely used in our laboratory. Hopefully, the increase of knowledge based on these methods will open more opportunities for the identification of new therapeutic targets for diseases where the ERK1/2 cascade is dysregulated, such as cancer, neurodegenerative diseases, and diabetes.

Key words

MAPK ERK Nuclear translocation Immunoflouresence Co-immunoprecipitation Proximity ligation assay 

Notes

Acknowledgments

We would like to thank Tami Hanoch for her help with the preparation of this chapter. This work was supported by a grant from the ISF. R.S. is an incumbent of the Yale S. Lewine and Ella Miller Lewine professorial chair for cancer research.

References

  1. 1.
    Keshet Y, Seger R (2010) The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 661:3–38CrossRefPubMedGoogle Scholar
  2. 2.
    Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2:195–209CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Peti W, Page R (2013) Molecular basis of MAP kinase regulation. Protein Sci 22:1698–1710CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44CrossRefPubMedGoogle Scholar
  5. 5.
    Carlson SM, Chouinard CR, Labadorf A et al (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4:ra11CrossRefGoogle Scholar
  6. 6.
    Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226CrossRefPubMedGoogle Scholar
  7. 7.
    Plotnikov A, Zehorai E, Procaccia S et al (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633CrossRefPubMedGoogle Scholar
  8. 8.
    Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12:915–927CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jaaro H, Rubinfeld H, Hanoch T et al (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci U S A 94:3742–3747CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fukuda M, Gotoh I, Adachi M et al (1997) A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase. J Biol Chem 272:32642–32648CrossRefPubMedGoogle Scholar
  11. 11.
    Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16:1901–1908CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rubinfeld H, Hanoch T, Seger R (1999) Identification of a cytoplasmic-retention sequence in ERK2. J Biol Chem 274:30349–30352CrossRefPubMedGoogle Scholar
  13. 13.
    Wolf I, Rubinfeld H, Yoon S et al (2001) Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J Biol Chem 276:24490–24497CrossRefPubMedGoogle Scholar
  14. 14.
    Tanoue T, Adachi M, Moriguchi T et al (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2:110–116CrossRefPubMedGoogle Scholar
  15. 15.
    Torii S, Kusakabe M, Yamamoto T et al (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44CrossRefPubMedGoogle Scholar
  16. 16.
    Ahn S, Shenoy SK, Wei H et al (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279:35518–35525CrossRefPubMedGoogle Scholar
  17. 17.
    Reszka AA, Bulinski JC, Krebs EG et al (1997) Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol Biol Cell 8:1219–1232CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Perlson E, Michaelevski I, Kowalsman N et al (2006) Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J Mol Biol 364:938–944CrossRefPubMedGoogle Scholar
  19. 19.
    Chuderland D, Seger R (2005) Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol 29:57–74CrossRefPubMedGoogle Scholar
  20. 20.
    Chuderland D, Marmor G, Shainskaya A et al (2008) Calcium-mediated interactions regulate the subcellular localization of extracellular signal-regulated kinases. J Biol Chem 283:11176–11188CrossRefPubMedGoogle Scholar
  21. 21.
    Ding Q, Zhao L, Guo H et al (2010) The nucleocytoplasmic transport of viral proteins. Virol Sin 25:79–85CrossRefPubMedGoogle Scholar
  22. 22.
    Floch AG, Palancade B, Doye V (2014) Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 122:1–40CrossRefPubMedGoogle Scholar
  23. 23.
    Sorokin AV, Kim ER, Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. Biochemistry (Mosc) 72:1439–1457CrossRefGoogle Scholar
  24. 24.
    Zehorai E, Yao Z, Plotnikov A et al (2010) The subcellular localization of MEK and ERK—a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol 314:213–220CrossRefPubMedGoogle Scholar
  25. 25.
    Ranganathan A, Yazicioglu MN, Cobb MH (2006) The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy. J Biol Chem 281:15645–15652CrossRefPubMedGoogle Scholar
  26. 26.
    Wiegert JS, Bengtson CP, Bading H (2007) Diffusion and not active transport underlies and limits ERK1/2 synapse-to-nucleus signaling in hippocampal neurons. J Biol Chem 282:29621–29633CrossRefPubMedGoogle Scholar
  27. 27.
    Whitehurst AW, Wilsbacher JL, You Y et al (2002) ERK2 enters the nucleus by a carrier-independent mechanism. Proc Natl Acad Sci U S A 99:7496–7501CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31:850–861CrossRefPubMedGoogle Scholar
  29. 29.
    Plotnikov A, Flores K, Maik-Rachline G et al (2015) The nuclear translocation of ERK1/2 as an anticancer target. Nat Commun 6:6685CrossRefPubMedGoogle Scholar
  30. 30.
    Lorenzen JA, Baker SE, Denhez F et al (2001) Nuclear import of activated D-ERK by DIM-7, an importin family member encoded by the gene moleskin. Development 128:1403–1414PubMedGoogle Scholar
  31. 31.
    Zehorai E, Seger R (2014) Beta-like importins mediate the nuclear translocation of mitogen-activated protein kinases. Mol Cell Biol 34:259–270CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yao Z, Seger R (2004) The molecular mechanism of MAPK/ERK inactivation. Curr Genomics 5:385–393CrossRefGoogle Scholar
  33. 33.
    Rodriguez J, Crespo P (2011) Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal 4:re3CrossRefPubMedGoogle Scholar
  34. 34.
    Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111:807–816CrossRefPubMedGoogle Scholar
  35. 35.
    Colbeau A, Nachbaur J, Vignais PM (1971) Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 249:462–492CrossRefPubMedGoogle Scholar
  36. 36.
    Jivan A, Ranganathan A, Cobb MH (2010) Reconstitution of the nuclear transport of the MAP kinase ERK2. Methods Mol Biol 661:273–285CrossRefPubMedGoogle Scholar
  37. 37.
    Claude A (1946) Fractionation of mammalian liver cells by differential centrifugation; experimental procedures and results. J Exp Med 84:61–89CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Claude A (1946) Fractionation of mammalian liver cells by differential centrifugation; problems, methods, and preparation of extract. J Exp Med 84:51–59CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hogeboom GH, Schneider WC, Pallade GE (1948) Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem 172:619–635PubMedGoogle Scholar
  40. 40.
    Berthet J, De Duve C (1951) Tissue fractionation studies. I. The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem J 50:174–181CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    De Duve C, Pressman BC, Gianetto R et al (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Blobel G, Potter VR (1966) Nuclei from rat liver: isolation method that combines purity with high yield. Science 154:1662–1665CrossRefPubMedGoogle Scholar
  43. 43.
    Bronfman M, Loyola G, Koenig CS (1998) Isolation of intact organelles by differential centrifugation of digitonin-treated hepatocytes using a table Eppendorf centrifuge. Anal Biochem 255:252–256CrossRefPubMedGoogle Scholar
  44. 44.
    Nabbi A, Riabowol K (2015) Isolation of nuclei. Cold Spring Harb Protoc 2015(8):731–734PubMedGoogle Scholar
  45. 45.
    Tavare JM, Fletcher LM, Welsh GI (2001) Using green fluorescent protein to study intracellular signalling. J Endocrinol 170:297–306CrossRefPubMedGoogle Scholar
  46. 46.
    Marchi M, Parra R, Costa M et al (2010) Localization and trafficking of fluorescently tagged ERK1 and ERK2. Methods Mol Biol 661:287–301CrossRefPubMedGoogle Scholar
  47. 47.
    Vandame P, Spriet C, Riquet F (2013) Optimization of ERK activity biosensors for both ratiometric and lifetime FRET measurements. Sensors (Basel) 14:1140–1154CrossRefGoogle Scholar
  48. 48.
    Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105:19264–19269CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sato M, Kawai Y, Umezawa Y (2007) Genetically encoded fluorescent indicators to visualize protein phosphorylation by extracellular signal-regulated kinase in single living cells. Anal Chem 79:2570–2575CrossRefPubMedGoogle Scholar
  50. 50.
    Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kedziora KM, Jalink K (2015) Fluorescence resonance energy transfer microscopy (FRET). Methods Mol Biol 1251:67–82CrossRefPubMedGoogle Scholar
  52. 52.
    Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhou X, Herbst-Robinson KJ, Zhang J (2012) Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol 504:317–340CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sparta B, Pargett M, Minguet M et al (2015) Receptor-level mechanisms are required for EGF-stimulated ERK activity pulses. J Biol Chem 290:24784–24792CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Soderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000CrossRefPubMedGoogle Scholar
  56. 56.
    Jarvius M, Paulsson J, Weibrecht I et al (2007) In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 6:1500–1509CrossRefPubMedGoogle Scholar
  57. 57.
    Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477CrossRefPubMedGoogle Scholar
  58. 58.
    Cooke MJ, Phillips SR, Shah DS et al (2008) Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins. Cytotechnology 56:71–79CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mehta MM, Munker R, Kranz B et al (1983) Immunofluorescence with monoclonal antibodies on poly-L-lysine coated slides: an alternative to conventional methods. Blut 47:237–242CrossRefPubMedGoogle Scholar
  60. 60.
    Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66:198–200CrossRefPubMedGoogle Scholar
  61. 61.
    Rainaldi G, Calcabrini A, Santini MT (1998) Positively charged polymer polylysine-induced cell adhesion molecule redistribution in K562 cells. J Mater Sci Mater Med 9:755–760CrossRefPubMedGoogle Scholar
  62. 62.
    Scheffler JM, Schiefermeier N, Huber LA (2014) Mild fixation and permeabilization protocol for preserving structures of endosomes, focal adhesions, and actin filaments during immunofluorescence analysis. Methods Enzymol 535:93–102CrossRefPubMedGoogle Scholar
  63. 63.
    Stadler C, Skogs M, Brismar H et al (2010) A single fixation protocol for proteome-wide immunofluorescence localization studies. J Proteomics 73:1067–1078CrossRefPubMedGoogle Scholar
  64. 64.
    Krenik KD, Kephart GM, Offord KP et al (1989) Comparison of antifading agents used in immunofluorescence. J Immunol Methods 117:91–97CrossRefPubMedGoogle Scholar
  65. 65.
    Johnson GD, Nogueira Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350CrossRefPubMedGoogle Scholar
  66. 66.
    Schneider C, Newman RA, Sutherland DR et al (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem 257:10766–10769PubMedGoogle Scholar
  67. 67.
    Sousa MM, Steen KW, Hagen L et al (2011) Antibody cross-linking and target elution protocols used for immunoprecipitation significantly modulate signal-to noise ratio in downstream 2D-PAGE analysis. Proteome Sci 9:45CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hernychova L, Nekulova M, Potesil D et al (2012) A combined immunoprecipitation and mass spectrometric approach to determine deltaNp63-interacting partners. Klin Onkol 25(Suppl 2):64–69Google Scholar
  69. 69.
    Moresco JJ, Carvalho PC, Yates JR 3rd (2010) Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. J Proteomics 73:2198–2204CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Free RB, Hazelwood LA, Sibley DR (2009) Identifying novel protein-protein interactions using co-immunoprecipitation and mass spectroscopy. Curr Protoc Neurosci Chapter 5:Unit 5.28PubMedGoogle Scholar
  71. 71.
    Bozzacco L, Yu H (2013) Identification and quantitation of MHC class II-bound peptides from mouse spleen dendritic cells by immunoprecipitation and mass spectrometry analysis. Methods Mol Biol 1061:231–243CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biological RegulationThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations