Advertisement

ERK Signaling pp 151-162 | Cite as

Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation

  • Lorena Agudo-Ibañez
  • Piero Crespo
  • Berta CasarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)

Abstract

A vast number of stimuli use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their cognate receptors, in order to regulate multiple cellular functions, including key processes such as proliferation, cell cycle progression, differentiation, and survival. The duration, intensity and specificity of the responses are, in part, controlled by the compartmentalization/subcellular localization of the signaling intermediaries. Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site-specific regulatory mechanisms, distinctively engaging effector pathways and switching-on diverse genetic programs to generate a multitude of biological responses. The Ras effector pathway leading to ERKs activation is also subject to space-related regulatory processes. About half of ERK1/2 substrates are found in the nucleus and function mainly as transcription factors. The other half resides in the cytosol and other cellular organelles. Such subcellular distribution enhances the complexity of the Ras/ERK cascade and constitutes an essential mechanism to endow variability to its signals, which enables their participation in the regulation of a broad variety of functions. Thus, analyzing the subcellular compartmentalization of the members of the Ras/ERK cascade constitutes an important factor to be taken into account when studying specific biological responses evoked by Ras/ERK signals. Herein, we describe methods for such purpose.

Key words

Ras Membrane microdomains MAP kinases ERK Subcellular fractionation Spatial regulation of signaling 

References

  1. 1.
    Crespo P, Leon J (2000) Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol Life Sci 57:1613–1636CrossRefPubMedGoogle Scholar
  2. 2.
    Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375CrossRefPubMedGoogle Scholar
  3. 3.
    Matallanas D, Arozarena I, Berciano MT et al (2003) Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. J Biol Chem 278:4572–4581CrossRefPubMedGoogle Scholar
  4. 4.
    Chiu VK, Bivona T, Hach A et al (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350PubMedGoogle Scholar
  5. 5.
    Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3:297–307CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Choy E, Chiu VK, Silletti J et al (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80CrossRefPubMedGoogle Scholar
  7. 7.
    Arozarena I, Matallanas D, Berciano MT et al (2004) Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors. Mol Cell Biol 24:1516–1530CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Caloca MJ, Zugaza JL, Bustelo XR (2003) Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J Biol Chem 278:33465–33473CrossRefPubMedGoogle Scholar
  9. 9.
    Bivona TG, Perez De Castro I, Ahearn IM et al (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698CrossRefPubMedGoogle Scholar
  10. 10.
    Arozarena I, Calvo F, Crespo P (2011) Ras, an actor or many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2:182–194CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Matallanas D, Sanz-Moreno V, Arozarena I et al (2006) Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26:100–116CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Agudo-Ibanez L, Nunez F, Calvo F et al (2007) Transcriptomal profiling of site-specific Ras signals. Cell Signal 19:2264–2276CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harding A, Tian T, Westbury E et al (2005) Subcellular localization determines MAP kinase signal output. Curr Biol 15:869–873CrossRefPubMedGoogle Scholar
  14. 14.
    Agudo-Ibanez L, Herrero A, Barbacid M et al (2015) H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and deacylation events. Mol Cell Biol 35:1898–1914CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186CrossRefPubMedGoogle Scholar
  16. 16.
    Pouyssegur J, Lenormand P (2003) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem 270:3291–3299CrossRefPubMedGoogle Scholar
  17. 17.
    Burack WR, Shaw AS (2005) Live cell imaging of ERK and MEK: simple binding equilibrium explains the regulated nucleocytoplasmic distribution of ERK. J Biol Chem 280:3832–3837CrossRefPubMedGoogle Scholar
  18. 18.
    Sanz-Moreno V, Casar B, Crespo P (2003) p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels. Mol Cell Biol 23:3079–3090CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Glading A, Uberall F, Keyse SM et al (2001) Membrane proximal ERK signaling is required for M-calpain activation downstream of epidermal growth factor receptor signaling. J Biol Chem 276:23341–23348CrossRefPubMedGoogle Scholar
  20. 20.
    Ajenjo N, Canon E, Sanchez-Perez I et al (2004) Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells. J Biol Chem 279:32813–32823CrossRefPubMedGoogle Scholar
  21. 21.
    Casar B, Arozarena I, Sanz-Moreno V et al (2009) Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol Cell Biol 29:1338–1353CrossRefPubMedGoogle Scholar
  22. 22.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44CrossRefPubMedGoogle Scholar
  23. 23.
    Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12:915–927CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lenormand P, Sardet C, Pages G et al (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122:1079–1088CrossRefPubMedGoogle Scholar
  25. 25.
    Formstecher E, Ramos JW, Fauquet M et al (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1:239–250CrossRefPubMedGoogle Scholar
  26. 26.
    Ishibe S, Joly D, Zhu X et al (2003) Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12:1275–1285CrossRefPubMedGoogle Scholar
  27. 27.
    Torii S, Kusakabe M, Yamamoto T et al (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44CrossRefPubMedGoogle Scholar
  28. 28.
    Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719CrossRefPubMedGoogle Scholar
  29. 29.
    Casar B, Pinto A, Crespo P (2009) ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task. Cell Cycle 8:1007–1013CrossRefPubMedGoogle Scholar
  30. 30.
    Khokhlatchev AV, Canagarajah B, Wilsbacher J et al (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615CrossRefPubMedGoogle Scholar
  31. 31.
    Casar B, Pinto A, Crespo P (2008) Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell 31:708–721CrossRefPubMedGoogle Scholar
  32. 32.
    Herrero A, Pinto A, Colon-Bolea P et al (2015) Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell 28:170–182CrossRefPubMedGoogle Scholar
  33. 33.
    Yang M, Ellenberg J, Bonifacino JS et al (1997) The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum. J Biol Chem 272:1970–1975CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang J, Kang DE, Xia W et al (1998) Subcellular distribution and turnover of presenilins in transfected cells. J Biol Chem 273:12436–12442CrossRefPubMedGoogle Scholar
  35. 35.
    Boulter E, Garcia-Mata R, Guilluy C et al (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12:477–483CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jaaro H, Rubinfeld H, Hanoch T et al (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci USA 94:3742–3747CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Casar B, Sanz-Moreno V, Yazicioglu MN et al (2007) Mxi2 promotes stimulus-independent ERK nuclear translocation. EMBO J 26:635–646CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lorena Agudo-Ibañez
    • 1
  • Piero Crespo
    • 1
  • Berta Casar
    • 1
    Email author
  1. 1.Instituto de Biomedicina y Biotecnología de CantabriaConsejo Superior de Investigaciones Científicas – Universidad de CantabriaSantanderSpain

Personalised recommendations