ERK Signaling pp 137-149 | Cite as

Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE

  • Hidetaka KosakoEmail author
  • Kou Motani
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)


Extracellular signal-regulated kinase (ERK) regulates various cellular functions through phosphorylation of numerous downstream substrates, which have not yet been fully characterized. To date, several phosphoproteomic approaches have been employed to identify novel substrates for ERK. In this chapter, we describe a method to globally identify ERK substrates by combining immobilized metal affinity chromatography (IMAC) and two-dimensional difference gel electrophoresis (2D-DIGE) followed by mass spectrometry. Phosphoprotein enrichment by IMAC enables the subsequent detection of many protein spots with different fluorescence intensities between ERK-inhibited and -activated cells in 2D-DIGE analysis. Furthermore, the advanced sensitivity and resolution of liquid chromatography coupled with tandem mass spectrometry allow for a direct identification of proteins obtained from silver-stained 2D-DIGE gels. Validation experiments such as Phos-tag Western blotting are important steps to further elucidate the functional roles of ERK-mediated phosphorylation of these newly identified substrates.

Key words

Proteomics Phosphoproteomics Immobilized metal affinity chromatography 2D-DIGE LC-MS/MS Phos-tag Phosphorylation ERK MAP kinase 



We thank Megumi Kawano, Mayumi Kajimoto, and Junya Yabuno for experimental assistance, Mayumi Iwata for secretarial assistance, Dr. Maria Tsoumpra for helpful advice, and Dr. Naoki Tani for mass spectrometry analysis. This work was supported by JSPS KAKENHI Grant Numbers 23570231 and 26440101, and the program of the Joint Usage/Research Center for Developmental Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University to H.K.


  1. 1.
    Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143CrossRefPubMedGoogle Scholar
  2. 2.
    Kosako H, Gotoh Y, Nishida E (1994) Requirement for the MAP kinase kinase/MAP kinase cascade in Xenopus oocyte maturation. EMBO J 13:2131–2138PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kyriakis JM, App H, Zhang XF et al (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421CrossRefPubMedGoogle Scholar
  4. 4.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44CrossRefPubMedGoogle Scholar
  5. 5.
    Hornbeck PV, Zhang B, Murray B et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520CrossRefPubMedGoogle Scholar
  6. 6.
    Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eblen ST, Kumar NV, Shah K et al (2003) Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J Biol Chem 278:14926–14935CrossRefPubMedGoogle Scholar
  8. 8.
    Lewis TS, Hunt JB, Aveline LD et al (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354CrossRefPubMedGoogle Scholar
  9. 9.
    Old WM, Shabb JB, Houel S et al (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34:115–131CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pan C, Olsen JV, Daub H et al (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Carlson SM, Chouinard CR, Labadorf A et al (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4:rs11Google Scholar
  12. 12.
    Courcelles M, Frémin C, Voisin L et al (2013) Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol 9:669CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Guerrera IC, Predic-Atkinson J, Kleiner O et al (2005) Enrichment of phosphoproteins for proteomic analysis using immobilized Fe(III)-affinity adsorption chromatography. J Proteome Res 4:1545–1553CrossRefPubMedGoogle Scholar
  14. 14.
    Dubrovska A, Souchelnytskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5:4678–4683CrossRefPubMedGoogle Scholar
  15. 15.
    Machida M, Kosako H, Shirakabe K et al (2007) Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J 274:1576–1587CrossRefPubMedGoogle Scholar
  16. 16.
    Kosako H, Yamaguchi N, Aranami C et al (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16:1026–1035CrossRefPubMedGoogle Scholar
  17. 17.
    Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077CrossRefPubMedGoogle Scholar
  18. 18.
    Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396CrossRefPubMedGoogle Scholar
  19. 19.
    Ueda K, Kosako H, Fukui Y et al (2004) Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate. J Biol Chem 279:41815–41821CrossRefPubMedGoogle Scholar
  20. 20.
    Santamaría E, Sánchez-Quiles V, Fernández-Irigoyen J et al (2012) A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells. Methods Mol Biol 909:165–180PubMedGoogle Scholar
  21. 21.
    Deng Z, Bu S, Wang Z-Y (2012) Quantitative analysis of protein phosphorylation using two-dimensional difference gel electrophoresis. Methods Mol Biol 876:47–66CrossRefPubMedGoogle Scholar
  22. 22.
    Nakaya M, Tajima M, Kosako H et al (2013) GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 4:1532CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tang W, Kim TW, Oses-Prieto JA et al (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kosako H, Nagano K (2011) Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 8:81–94CrossRefPubMedGoogle Scholar
  25. 25.
    Pritchard CA, Samuels ML, Bosch E et al (1995) Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 15:6430–6442CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kondo T, Hirohashi S (2006) Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc 1:2940–2956CrossRefPubMedGoogle Scholar
  27. 27.
    Shevchenko A, Tomas H, Havlis J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefGoogle Scholar
  28. 28.
    Kinoshita-Kikuta E, Aoki Y, Kinoshita E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366CrossRefPubMedGoogle Scholar
  29. 29.
    Kosako H (2009) Phos-tag Western blotting for detecting stoichiometric protein phosphorylation in cells. Protoc Exch. doi: 10.1038/nprot.2009.170 Google Scholar
  30. 30.
    Han MY, Kosako H, Watanabe T et al (2007) Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol 27:8190–8204CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mitchell DJ, Blasier KR, Jeffery ED et al (2012) Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 32:15495–15510CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of Cell Signaling, Fujii Memorial Institute of Medical SciencesTokushima UniversityTokushimaJapan

Personalised recommendations