How Genetics Has Helped Piece Together the MAPK Signaling Pathway

  • Dariel Ashton-Beaucage
  • Marc TherrienEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1487)


Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.

Key words

Review RAS/MAPK signaling RAS MAPK ERK Drosophila melanogaster Caenorhabditis elegans Genetics History Genetic screen RNAi screen 



D.A.B. was the recipient of a Cole Foundation studentship. This work was supported by funds from the Canadian Institutes for Health Research (CIHR) to M.T. (MOP-119443).


  1. 1.
    Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310PubMedCrossRefGoogle Scholar
  2. 2.
    Kamata T, Feramisco JR (1984) Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature 310:147–150PubMedCrossRefGoogle Scholar
  3. 3.
    Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465PubMedCrossRefGoogle Scholar
  4. 4.
    Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6(11):827–837PubMedCrossRefGoogle Scholar
  5. 5.
    McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26(22):3113–3121PubMedCrossRefGoogle Scholar
  6. 6.
    Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308PubMedCrossRefGoogle Scholar
  7. 7.
    Zebisch A, Czernilofsky AP, Keri G et al (2007) Signaling through RAS-RAF-MEK-ERK: from basics to bedside. Curr Med Chem 14:601–623PubMedCrossRefGoogle Scholar
  8. 8.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16:281–298PubMedCrossRefGoogle Scholar
  10. 10.
    Turjanski AG, Vaque JP, Gutkind JS (2007) MAP kinases and the control of nuclear events. Oncogene 26(22):3240–3253PubMedCrossRefGoogle Scholar
  11. 11.
    Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2):320–344PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2:195–209PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44PubMedCrossRefGoogle Scholar
  14. 14.
    Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143PubMedCrossRefGoogle Scholar
  15. 15.
    Han M, Sternberg PW (1990) let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63:921–931PubMedCrossRefGoogle Scholar
  16. 16.
    Beitel GJ, Clark SG, Horvitz HR (1990) Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348:503–509PubMedCrossRefGoogle Scholar
  17. 17.
    Simon MA, Bowtell DD, Dodson GS et al (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67:701–716PubMedCrossRefGoogle Scholar
  18. 18.
    Mulcahy LS, Smith MR, Stacey DW (1985) Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313:241–243PubMedCrossRefGoogle Scholar
  19. 19.
    Downward J, Riehl R, Wu L et al (1990) Identification of a nucleotide exchange-promoting activity for p21ras. Proc Natl Acad Sci U S A 87:5998–6002PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248:67–69PubMedCrossRefGoogle Scholar
  21. 21.
    Bonfini L, Karlovich CA, Dasgupta C et al (1992) The Son of sevenless gene product: a putative activator of Ras. Science 255:603–606PubMedCrossRefGoogle Scholar
  22. 22.
    Rogge RD, Karlovich CA, Banerjee U (1991) Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64:39–48PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson LC, Gibbs JB, Marshall MS et al (1987) CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235:1218–1221PubMedCrossRefGoogle Scholar
  24. 24.
    Broek D, Toda T, Michaeli T et al (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799PubMedCrossRefGoogle Scholar
  25. 25.
    Bowtell D, Fu P, Simon M et al (1992) Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. Proc Natl Acad Sci U S A 89:6511–6515PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shou C, Farnsworth CL, Neel BG et al (1992) Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358:351–354PubMedCrossRefGoogle Scholar
  27. 27.
    Wei W, Mosteller RD, Sanyal P et al (1992) Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:7100–7104PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Martegani E, Vanoni M, Zippel R et al (1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 11:2151–2157PubMedPubMedCentralGoogle Scholar
  29. 29.
    Clark SG, Stern MJ, Horvitz HR (1992) C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356:340–344PubMedCrossRefGoogle Scholar
  30. 30.
    Buday L, Downward J (1993) Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73:611–620PubMedCrossRefGoogle Scholar
  31. 31.
    Chardin P, Camonis JH, Gale NW et al (1993) Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260(5112):1338–1343PubMedCrossRefGoogle Scholar
  32. 32.
    Egan SE, Giddings BW, Brooks MW et al (1993) Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51PubMedCrossRefGoogle Scholar
  33. 33.
    Gale NW, Kaplan S, Lowenstein EJ et al (1993) Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363:88–92PubMedCrossRefGoogle Scholar
  34. 34.
    Li N, Batzer A, Daly R et al (1993) Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363:85–88PubMedCrossRefGoogle Scholar
  35. 35.
    Olivier JP, Raabe T, Henkemeyer M et al (1993) A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73:179–191PubMedCrossRefGoogle Scholar
  36. 36.
    Rozakis-Adcock M, Fernley R, Wade J et al (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363:83–85PubMedCrossRefGoogle Scholar
  37. 37.
    Simon MA, Dodson GS, Rubin GM (1993) An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73:169–177PubMedCrossRefGoogle Scholar
  38. 38.
    Vogel US, Dixon RA, Schaber MD et al (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335:90–93PubMedCrossRefGoogle Scholar
  39. 39.
    Ballester R, Marchuk D, Boguski M et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859PubMedCrossRefGoogle Scholar
  40. 40.
    Trahey M, Wong G, Halenbeck R et al (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700PubMedCrossRefGoogle Scholar
  41. 41.
    Adari H, Lowy DR, Willumsen BM et al (1988) Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521PubMedCrossRefGoogle Scholar
  42. 42.
    Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545PubMedCrossRefGoogle Scholar
  43. 43.
    Xu GF, O'Connell P, Viskochil D et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608PubMedCrossRefGoogle Scholar
  44. 44.
    Martin GA, Viskochil D, Bollag G et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849PubMedCrossRefGoogle Scholar
  45. 45.
    Gaul U, Mardon G, Rubin GM (1992) A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68:1007–1019PubMedCrossRefGoogle Scholar
  46. 46.
    Smith MR, DeGudicibus SJ, Stacey DW (1986) Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543PubMedCrossRefGoogle Scholar
  47. 47.
    Kolch W, Heidecker G, Lloyd P et al (1991) Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349:426–428PubMedCrossRefGoogle Scholar
  48. 48.
    Rapp UR, Todaro GJ (1980) Generation of oncogenic mouse type C viruses: in vitro selection of carcinoma-inducing variants. Proc Natl Acad Sci U S A 77:624–628PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rapp UR, Goldsborough MD, Mark GE et al (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci U S A 80:4218–4222PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bonner T, O'Brien SJ, Nash WG et al (1984) The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 223:71–74PubMedCrossRefGoogle Scholar
  51. 51.
    Ishikawa F, Takaku F, Ochiai M et al (1985) Activated c-raf gene in a rat hepatocellular carcinoma induced by 2-amino-3-methylimidazo[4,5-f]quinoline. Biochem Biophys Res Commun 132:186–192PubMedCrossRefGoogle Scholar
  52. 52.
    Kozak C, Gunnell MA, Rapp UR (1984) A new oncogene, c-raf, is located on mouse chromosome 6. J Virol 49:297–299PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bonner TI, Kerby SB, Sutrave P et al (1985) Structure and biological activity of human homologs of the raf/mil oncogene. Mol Cell Biol 5:1400–1407PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dickson B, Sprenger F, Morrison D et al (1992) Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360:600–603PubMedCrossRefGoogle Scholar
  55. 55.
    Han M, Golden A, Han Y et al (1993) C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363:133–140PubMedCrossRefGoogle Scholar
  56. 56.
    Cutforth T, Rubin GM (1994) Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036PubMedCrossRefGoogle Scholar
  57. 57.
    van der Straten A, Rommel C, Dickson B et al (1997) The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J 16:1961–1969PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Schulte TW, Blagosklonny MV, Ingui C et al (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270:24585–24588PubMedCrossRefGoogle Scholar
  59. 59.
    Grammatikakis N, Lin JH, Grammatikakis A et al (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19:1661–1672PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tsuda L, Inoue YH, Yoo MA et al (1993) A protein kinase similar to MAP kinase activator acts downstream of the raf kinase in Drosophila. Cell 72:407–414PubMedCrossRefGoogle Scholar
  61. 61.
    Crews CM, Erikson RL (1992) Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product. Proc Natl Acad Sci U S A 89:8205–8209PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kyriakis JM, App H, Zhang XF et al (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421PubMedCrossRefGoogle Scholar
  63. 63.
    Wu Y, Han M, Guan KL (1995) MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events. Genes Dev 9:742–755PubMedCrossRefGoogle Scholar
  64. 64.
    Kornfeld K, Guan KL, Horvitz HR (1995) The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK. Genes Dev 9:756–768PubMedCrossRefGoogle Scholar
  65. 65.
    Biggs WH 3rd, Zavitz KH, Dickson B et al (1994) The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J 13:1628–1635PubMedPubMedCentralGoogle Scholar
  66. 66.
    Biggs WH 3rd, Zipursky SL (1992) Primary structure, expression, and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase. Proc Natl Acad Sci U S A 89:6295–6299PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lackner MR, Kornfeld K, Miller LM et al (1994) A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev 8:160–173PubMedCrossRefGoogle Scholar
  68. 68.
    Wu Y, Han M (1994) Suppression of activated Let-60 ras protein defines a role of Caenorhabditis elegans Sur-1 MAP kinase in vulval differentiation. Genes Dev 8:147–159PubMedCrossRefGoogle Scholar
  69. 69.
    Boulton TG, Nye SH, Robbins DJ et al (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675PubMedCrossRefGoogle Scholar
  70. 70.
    Boulton TG, Gregory JS, Cobb MH (1991) Purification and properties of extracellular signal-regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. Biochemistry 30:278–286PubMedCrossRefGoogle Scholar
  71. 71.
    Perkins LA, Larsen I, Perrimon N (1992) corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70:225–236PubMedCrossRefGoogle Scholar
  72. 72.
    Raabe T, Riesgo-Escovar J, Liu X et al (1996) DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell 85:911–920PubMedCrossRefGoogle Scholar
  73. 73.
    Herbst R, Zhang X, Qin J et al (1999) Recruitment of the protein tyrosine phosphatase CSW by DOS is an essential step during signaling by the sevenless receptor tyrosine kinase. EMBO J 18:6950–6961PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cleghon V, Feldmann P, Ghiglione C et al (1998) Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol Cell 2:719–727PubMedCrossRefGoogle Scholar
  75. 75.
    Chong ZZ, Maiese K (2007) The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 22:1251–1267PubMedPubMedCentralGoogle Scholar
  76. 76.
    Hacohen N, Kramer S, Sutherland D et al (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263PubMedCrossRefGoogle Scholar
  77. 77.
    Casci T, Vinos J, Freeman M (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96:655–665PubMedCrossRefGoogle Scholar
  78. 78.
    Reich A, Sapir A, Shilo B (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126:4139–4147PubMedGoogle Scholar
  79. 79.
    Sasaki A, Taketomi T, Kato R et al (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5:427–432PubMedCrossRefGoogle Scholar
  80. 80.
    Gross I, Bassit B, Benezra M et al (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276:46460–46468PubMedCrossRefGoogle Scholar
  81. 81.
    Hanafusa H, Torii S, Yasunaga T et al (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4:850–858PubMedCrossRefGoogle Scholar
  82. 82.
    Tefft D, Lee M, Smith S et al (2002) mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am J Physiol Lung Cell Mol Physiol 283:L700–L706PubMedCrossRefGoogle Scholar
  83. 83.
    Jarvis LA, Toering SJ, Simon MA et al (2006) Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133:1133–1142PubMedCrossRefGoogle Scholar
  84. 84.
    Hanafusa H, Torii S, Yasunaga T et al (2004) Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 279:22992–22995PubMedCrossRefGoogle Scholar
  85. 85.
    Kim HJ, Taylor LJ, Bar-Sagi D (2007) Spatial regulation of EGFR signaling by Sprouty2. Curr Biol 17:455–461PubMedCrossRefGoogle Scholar
  86. 86.
    Sieglitz F, Matzat T, Yuva-Aydemir Y et al (2013) Antagonistic feedback loops involving Rau and Sprouty in the Drosophila eye control neuronal and glial differentiation. Sci Signal 6:ra96PubMedCrossRefGoogle Scholar
  87. 87.
    Dikic I, Schmidt MH (2007) Malfunctions within the Cbl interactome uncouple receptor tyrosine kinases from destructive transport. Eur J Cell Biol 86:505–512PubMedCrossRefGoogle Scholar
  88. 88.
    Yoon CH, Lee J, Jongeward GD et al (1995) Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269:1102–1105PubMedCrossRefGoogle Scholar
  89. 89.
    Wong ES, Lim J, Low BC et al (2001) Evidence for direct interaction between Sprouty and Cbl. J Biol Chem 276:5866–5875PubMedCrossRefGoogle Scholar
  90. 90.
    Fong CW, Leong HF, Wong ES et al (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278:33456–33464PubMedCrossRefGoogle Scholar
  91. 91.
    Hall AB, Jura N, DaSilva J et al (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314PubMedCrossRefGoogle Scholar
  92. 92.
    Rubin C, Litvak V, Medvedovsky H et al (2003) Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 13:297–307PubMedCrossRefGoogle Scholar
  93. 93.
    Wong ES, Fong CW, Lim J et al (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21:4796–4808PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Egan JE, Hall AB, Yatsula BA et al (2002) The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc Natl Acad Sci U S A 99:6041–6046PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Miura GI, Roignant JY, Wassef M et al (2008) Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development 135:1913–1922PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Tanase CA (2010) Histidine domain-protein tyrosine phosphatase interacts with Grb2 and GrpL. PLoS One 5:e14339PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kim HJ, Bar-Sagi D (2004) Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 5:441–450PubMedCrossRefGoogle Scholar
  98. 98.
    Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214PubMedCrossRefGoogle Scholar
  99. 99.
    Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355PubMedCrossRefGoogle Scholar
  100. 100.
    Moodie SA, Willumsen BM, Weber MJ et al (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang XF, Settleman J, Kyriakis JM et al (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313PubMedCrossRefGoogle Scholar
  102. 102.
    Hughes DA, Ashworth A, Marshall CJ (1993) Complementation of byr1 in fission yeast by mammalian MAP kinase kinase requires coexpression of Raf kinase. Nature 364:349–352PubMedCrossRefGoogle Scholar
  103. 103.
    Howe LR, Leevers SJ, Gomez N et al (1992) Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342PubMedCrossRefGoogle Scholar
  104. 104.
    Errede B, Levin DE (1993) A conserved kinase cascade for MAP kinase activation in yeast. Curr Opin Cell Biol 5:254–260PubMedCrossRefGoogle Scholar
  105. 105.
    Pelech SL, Sanghera JS (1992) Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem Sci 17:233–238PubMedCrossRefGoogle Scholar
  106. 106.
    Campbell SL, Khosravi-Far R, Rossman KL et al (1998) Increasing complexity of Ras signaling. Oncogene 17:1395–1413PubMedCrossRefGoogle Scholar
  107. 107.
    Carlson SM, Chouinard CR, Labadorf A et al (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4:rs11PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kosako H, Yamaguchi N, Aranami C et al (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16:1026–1035PubMedCrossRefGoogle Scholar
  109. 109.
    Old WM, Shabb JB, Houel S et al (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34:115–131PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Courcelles M, Fremin C, Voisin L et al (2013) Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol 9:669PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sundaram M, Han M (1995) The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83:889–901PubMedCrossRefGoogle Scholar
  112. 112.
    Therrien M, Chang HC, Solomon NM et al (1995) KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888PubMedCrossRefGoogle Scholar
  113. 113.
    Kornfeld K, Hom DB, Horvitz HR (1995) The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83:903–913PubMedCrossRefGoogle Scholar
  114. 114.
    Douziech M, Sahmi M, Laberge G et al (2006) A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Genes Dev 20:807–819PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Stewart S, Sundaram M, Zhang Y et al (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19:5523–5534PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Roy F, Laberge G, Douziech M et al (2002) KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16:427–438PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Anselmo AN, Bumeister R, Thomas JM et al (2002) Critical contribution of linker proteins to Raf kinase activation. J Biol Chem 277:5940–5943PubMedCrossRefGoogle Scholar
  118. 118.
    Lozano J, Xing R, Cai Z et al (2003) Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res 63:4232–4238PubMedGoogle Scholar
  119. 119.
    Nguyen A, Burack WR, Stock JL et al (2002) Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22:3035–3045PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Therrien M, Michaud NR, Rubin GM et al (1996) KSR modulates signal propagation within the MAPK cascade. Genes Dev 10:2684–2695PubMedCrossRefGoogle Scholar
  121. 121.
    Xing H, Kornfeld K, Muslin AJ (1997) The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol 7:294–300PubMedCrossRefGoogle Scholar
  122. 122.
    Denouel-Galy A, Douville EM, Warne PH et al (1998) Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol 8:46–55PubMedCrossRefGoogle Scholar
  123. 123.
    Yu W, Fantl WJ, Harrowe G et al (1998) Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8:56–64PubMedCrossRefGoogle Scholar
  124. 124.
    Cacace AM, Michaud NR, Therrien M et al (1999) Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol 19:229–240PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Yan F, John SK, Wilson G et al (2004) Kinase suppressor of Ras-1 protects intestinal epithelium from cytokine-mediated apoptosis during inflammation. J Clin Invest 114:1272–1280PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hu J, Yu H, Kornev AP et al (2011) Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc Natl Acad Sci U S A 108:6067–6072PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Therrien M, Wong AM, Rubin GM (1998) CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95:343–353PubMedCrossRefGoogle Scholar
  128. 128.
    Laberge G, Douziech M, Therrien M (2005) Src42 binding activity regulates Drosophila RAF by a novel CNK-dependent derepression mechanism. EMBO J 24:487–498PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Roignant JY, Hamel S, Janody F et al (2006) The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway. Genes Dev 20:795–806PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Rajakulendran T, Sahmi M, Kurinov I et al (2008) CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling. Proc Natl Acad Sci U S A 105:2836–2841PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hahn I, Fuss B, Peters A et al (2013) The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling. J Cell Sci 126:2470–2479PubMedCrossRefGoogle Scholar
  132. 132.
    Rajakulendran T, Sahmi M, Lefrancois M et al (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545PubMedCrossRefGoogle Scholar
  133. 133.
    Lavoie H, Therrien M (2010) It takes two RAFs to tango. Med Sci (Paris) 26:459–460CrossRefGoogle Scholar
  134. 134.
    Lanigan TM, Liu A, Huang YZ et al (2003) Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J 17:2048–2060PubMedCrossRefGoogle Scholar
  135. 135.
    Bumeister R, Rosse C, Anselmo A et al (2004) CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr Biol 14:439–445PubMedCrossRefGoogle Scholar
  136. 136.
    Yao I, Ohtsuka T, Kawabe H et al (2000) Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1. Biochem Biophys Res Commun 270:538–542PubMedCrossRefGoogle Scholar
  137. 137.
    Ziogas A, Moelling K, Radziwill G (2005) CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 280:24205–24211PubMedCrossRefGoogle Scholar
  138. 138.
    Gringhuis SI, den Dunnen J, Litjens M et al (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088PubMedCrossRefGoogle Scholar
  139. 139.
    Claperon A, Therrien M (2007) KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26:3143–3158PubMedCrossRefGoogle Scholar
  140. 140.
    Sieburth DS, Sun Q, Han M (1998) SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94:119–130PubMedCrossRefGoogle Scholar
  141. 141.
    Selfors LM, Schutzman JL, Borland CZ et al (1998) soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc Natl Acad Sci U S A 95:6903–6908PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Li W, Han M, Guan KL (2000) The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 14:895–900PubMedPubMedCentralGoogle Scholar
  143. 143.
    Rodriguez-Viciana P, Oses-Prieto J, Burlingame A et al (2006) A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 22:217–230PubMedCrossRefGoogle Scholar
  144. 144.
    Gu T, Orita S, Han M (1998) Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol Cell Biol 18:4556–4564PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Wassarman DA, Solomon NM, Chang HC et al (1996) Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev 10:272–278PubMedCrossRefGoogle Scholar
  146. 146.
    Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875–1884PubMedCrossRefGoogle Scholar
  147. 147.
    Jaumot M, Hancock JF (2001) Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20:3949–3958PubMedCrossRefGoogle Scholar
  148. 148.
    Tzivion G, Luo Z, Avruch J (1998) A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394:88–92PubMedCrossRefGoogle Scholar
  149. 149.
    Kockel L, Vorbruggen G, Jackle H et al (1997) Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev 11:1140–1147PubMedCrossRefGoogle Scholar
  150. 150.
    Chang HC, Rubin GM (1997) 14-3-3 Epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev 11:1132–1139PubMedCrossRefGoogle Scholar
  151. 151.
    Freed E, Symons M, Macdonald SG et al (1994) Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265:1713–1716PubMedCrossRefGoogle Scholar
  152. 152.
    Irie K, Gotoh Y, Yashar BM et al (1994) Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265:1716–1719PubMedCrossRefGoogle Scholar
  153. 153.
    Sieburth DS, Sundaram M, Howard RM et al (1999) A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev 13:2562–2569PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Yoder JH, Chong H, Guan KL et al (2004) Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J 23:111–119PubMedCrossRefGoogle Scholar
  155. 155.
    Karim FD, Chang HC, Therrien M et al (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143:315–329PubMedPubMedCentralGoogle Scholar
  156. 156.
    Pulido R, Zuniga A, Ullrich A (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J 17:7337–7350PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Karim FD, Rubin GM (1999) PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol Cell 3:741–750PubMedCrossRefGoogle Scholar
  158. 158.
    Blanco-Aparicio C, Torres J, Pulido R (1999) A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol 147:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Lee WJ, Kim SH, Kim YS et al (2000) Inhibition of mitogen-activated protein kinase by a Drosophila dual-specific phosphatase. Biochem J 349:821–828PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Reiterer V, Fey D, Kolch W et al (2013) Pseudophosphatase STYX modulates cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2. Proc Natl Acad Sci U S A 110:E2934–E2943PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Berset T, Hoier EF, Battu G et al (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291:1055–1058PubMedCrossRefGoogle Scholar
  162. 162.
    Kim SH, Kwon HB, Kim YS et al (2002) Isolation and characterization of a Drosophila homologue of mitogen-activated protein kinase phosphatase-3 which has a high substrate specificity towards extracellular-signal-regulated kinase. Biochem J 361:143–151PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Rintelen F, Hafen E, Nairz K (2003) The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 130:3479–3490PubMedCrossRefGoogle Scholar
  164. 164.
    Gomez AR, Lopez-Varea A, Molnar C et al (2005) Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 232:695–708PubMedCrossRefGoogle Scholar
  165. 165.
    Molnar C, de Celis JF (2013) Tay bridge is a negative regulator of EGFR signalling and interacts with Erk and Mkp3 in the Drosophila melanogaster wing. PLoS Genet 9:e1003982PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Baril C, Therrien M (2006) Alphabet, a Ser/Thr phosphatase of the protein phosphatase 2C family, negatively regulates RAS/MAPK signaling in Drosophila. Dev Biol 294:232–245PubMedCrossRefGoogle Scholar
  167. 167.
    Baril C, Sahmi M, Ashton-Beaucage D et al (2009) The PP2C alphabet is a negative regulator of stress-activated protein kinase signaling in Drosophila. Genetics 181:567–579PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Shohat M, Ben-Meir D, Lavi S (2012) Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells. PLoS One 7:e32438PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Li R, Gong Z, Pan C et al (2013) Metal-dependent protein phosphatase 1A functions as an extracellular signal-regulated kinase phosphatase. FEBS J 280:2700–2711PubMedCrossRefGoogle Scholar
  170. 170.
    Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  171. 171.
    Lee MH, Hook B, Pan G et al (2007) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3:e233PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kim SY, Kim JY, Malik S et al (2012) Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster. PLoS One 7:e34016PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ashton-Beaucage D, Udell CM, Lavoie H et al (2010) The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143:251–262PubMedCrossRefGoogle Scholar
  174. 174.
    Roignant JY, Treisman JE (2010) Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143:238–250PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Friedman A, Perrimon N (2006) A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444:230–234PubMedCrossRefGoogle Scholar
  176. 176.
    Friedman AA, Tucker G, Singh R et al (2011) Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 4:ra10Google Scholar
  177. 177.
    Ashton-Beaucage D, Udell CM, Gendron P et al (2014) A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 12:e1001809PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Friedman A, Perrimon N (2007) Genetic screening for signal transduction in the era of network biology. Cell 128:225–231PubMedCrossRefGoogle Scholar
  179. 179.
    Eyre TA, Wright MW, Lush MJ et al (2007) HCOP: a searchable database of human orthology predictions. Brief Bioinform 8:2–5PubMedCrossRefGoogle Scholar
  180. 180.
    Hu Y, Flockhart I, Vinayagam A et al (2011) An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12:357PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Ashton-Beaucage D, Therrien M (2010) The greater RTK/RAS/ERK signalling pathway: how genetics has helped piece together a signalling network. Med Sci (Paris) 26:1067–1073CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute for Research in Immunology and Cancer, Laboratory of Intracellular SignalingUniversité de MontréalMontrealCanada
  2. 2.Département de Pathologie et de Biologie CellulaireUniversité de MontréalMontrealCanada

Personalised recommendations