Abstract
Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection—fluorescence optical tweezers, or “fleezers”—is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.
The original version of this chapter was revised. The grant number in the acknowledgement section has been changed from “RC-105094 (to M.J.C.)” to “MCB-1514706 (to M.J.C.)”
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashkin A (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290
Woodside MT, Block SM (2014) Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu Rev Biophys 43:19–39
Ritchie DB, Woodside MT (2015) Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 34:43–51
Hilario J, Kowalczykowski SC (2010) Visualizing protein–DNA interactions at the single-molecule level. Curr Opin Chem Biol 14:15–22
Heller I, Hoekstra TP, King GA et al (2014) Optical Tweezers Analysis of DNA−Protein Complexes. Chem Rev 1:3087–3119
Mehta AD, Rief M, Spudich JA et al (1999) Single-molecule biomechanics with optical methods. Science 283:1689–1695
Bustamante C, Cheng W, Mejia YX (2011) Revisiting the central dogma one molecule at a time. Cell 144:480–497
Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465
Moffitt JR, Chemla YR, Izhaky D et al (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011
Chemla YR (2010) Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. Phys Chem Chem Phys 12:3080–3095
Larson MH, Landick R, Block SM (2011) Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 41:249–262
Wen J, Lancaster L, Hodges C et al (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–603
Cheng W, Arunajadai SG, Moffitt JR et al (2011) Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333:1746–1749
Qi Z, Pugh RA, Spies M et al (2013) Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. Elife 2:1–23
Moffitt JR, Chemla YR, Aathavan K et al (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450
Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8:335–340
La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92(190801):190801–190804
Lang MJ, Fordyce PM, Engh AM et al (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1:1–7
Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318:279–283
Van mameren J, Peterman EJ, Wuite GJ (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389
Lee KS, Balci H, Jia H et al (2013) Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 4:1–9
Suksombat S, Khafizov R, Kozlov AG et al (2015) Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. Elife 4:1–23
Comstock MJ, Whitley KD, Jia H et al (2015) Direct observation of structure-function relationship in a nucleic acid – processing enzyme. Science 348:352–354
van Dijk MA, Kapitein LC, Mameren J et al (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108:6479–6484
Brau RR, Tarsa PB, Ferrer JM et al (2006) Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys J 91:1069–1077
Bustamante C, Chemla YR, Moffitt JR (2008) In: Selvin P, Ha TJ (eds) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, New York
Block SM (1998) In: Spector D, Goldman R, Leinward L (eds) Cells: a laboratory manual. Cold Spring Harbor Press, New York
Van mameren J, Wuite GJ, Heller I (2011) Introduction to optical tweezers: background, system designs, and commercial solutions. Methods Mol Biol 783:1–20
Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809
Visscher K, Brakenhoff GJ, Krol JJ (1993) Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14:105–114
Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE JSTQE 2:1066–1076
Wuite GJ, Davenport RJ, Rappaport A et al (2000) An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophys J 79:1155–1167
Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9
Pralle A, Prummer M, Florin E et al (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44:378–386
Huisstede JHG, van Rooijen BD, van der Werf KO et al (2006) Dependence of silicon position-detector bandwidth on wavelength, power, and bias. Opt Lett 31:610–612
Analog Devices (2007) User’s Manual for CMOS 300 MSPS Complete DDS: AD9852, Rev. E. p. 1–52
Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86
Landry MP, McCall PM, Qi Z et al (2008) Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys J 97:2128–2136
Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893
Joo C, Ha T (2008) In: Selvin PR, Ha T (eds) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, New York
Swoboda M, Cheng H, Brugger D et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6:6364–6369
Brewer LR, Bianco PR (2008) Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat Methods 5:517–525
Min TL, Mears PJ, Golding I et al (2012) Chemotactic adaptation kinetics of individual Escherichia coli cells. Proc Natl Acad Sci U S A 109:9869–9874
Landry MP, Zou X, Wang L et al (2013) DNA target sequence identification mechanism for dimer-active protein complexes. Nucleic Acids Res 41:2416–2427
Ha T, Rasnik I, Cheng W et al (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419:638–641
Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612
Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28
Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770
Odijk T (1995) Stiff chains and filaments under tension. Macromolecules 28:7016–7018
Bustamante C, Marko JF, Siggia E et al (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600
Wang MD, Yin H, Landick R et al (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346
Woodside MT, Behnke-Parks WM, Larizadeh K et al (2006) Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A 103:6190–6195
Acknowledgments
We thank members of the Chemla, Ha, and Comstock laboratories for scientific discussion. Funding was provided by NSF grants MCB-0952442 (CAREER to Y.R.C.), PHY-1430124 (Center for the Physics of Living Cells to Y.R.C.), MCB-1514706 (to M.J.C.), and NIH grant R21 RR025341 (to Y.R.C.).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this protocol
Cite this protocol
Whitley, K.D., Comstock, M.J., Chemla, Y.R. (2017). High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_8
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6421-5_8
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-6419-2
Online ISBN: 978-1-4939-6421-5
eBook Packages: Springer Protocols
