Skip to main content

High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection—fluorescence optical tweezers, or “fleezers”—is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.

The original version of this chapter was revised. The grant number in the acknowledgement section has been changed from “RC-105094 (to M.J.C.)” to “MCB-1514706 (to M.J.C.)”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 120.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 175.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashkin A (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  CAS  Google Scholar 

  2. Woodside MT, Block SM (2014) Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu Rev Biophys 43:19–39

    Article  CAS  Google Scholar 

  3. Ritchie DB, Woodside MT (2015) Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 34:43–51

    Article  CAS  Google Scholar 

  4. Hilario J, Kowalczykowski SC (2010) Visualizing protein–DNA interactions at the single-molecule level. Curr Opin Chem Biol 14:15–22

    Article  CAS  Google Scholar 

  5. Heller I, Hoekstra TP, King GA et al (2014) Optical Tweezers Analysis of DNA−Protein Complexes. Chem Rev 1:3087–3119

    Article  Google Scholar 

  6. Mehta AD, Rief M, Spudich JA et al (1999) Single-molecule biomechanics with optical methods. Science 283:1689–1695

    Article  CAS  Google Scholar 

  7. Bustamante C, Cheng W, Mejia YX (2011) Revisiting the central dogma one molecule at a time. Cell 144:480–497

    Article  CAS  Google Scholar 

  8. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465

    Article  CAS  Google Scholar 

  9. Moffitt JR, Chemla YR, Izhaky D et al (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011

    Article  CAS  Google Scholar 

  10. Chemla YR (2010) Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. Phys Chem Chem Phys 12:3080–3095

    Article  CAS  Google Scholar 

  11. Larson MH, Landick R, Block SM (2011) Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 41:249–262

    Article  CAS  Google Scholar 

  12. Wen J, Lancaster L, Hodges C et al (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–603

    Article  CAS  Google Scholar 

  13. Cheng W, Arunajadai SG, Moffitt JR et al (2011) Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333:1746–1749

    Article  CAS  Google Scholar 

  14. Qi Z, Pugh RA, Spies M et al (2013) Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. Elife 2:1–23

    Article  Google Scholar 

  15. Moffitt JR, Chemla YR, Aathavan K et al (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450

    Google Scholar 

  16. Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8:335–340

    Article  CAS  Google Scholar 

  17. La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92(190801):190801–190804

    Article  Google Scholar 

  18. Lang MJ, Fordyce PM, Engh AM et al (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1:1–7

    Article  Google Scholar 

  19. Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318:279–283

    Article  CAS  Google Scholar 

  20. Van mameren J, Peterman EJ, Wuite GJ (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389

    Article  CAS  Google Scholar 

  21. Lee KS, Balci H, Jia H et al (2013) Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 4:1–9

    Google Scholar 

  22. Suksombat S, Khafizov R, Kozlov AG et al (2015) Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. Elife 4:1–23

    Article  Google Scholar 

  23. Comstock MJ, Whitley KD, Jia H et al (2015) Direct observation of structure-function relationship in a nucleic acid – processing enzyme. Science 348:352–354

    Article  CAS  Google Scholar 

  24. van Dijk MA, Kapitein LC, Mameren J et al (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108:6479–6484

    Article  Google Scholar 

  25. Brau RR, Tarsa PB, Ferrer JM et al (2006) Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys J 91:1069–1077

    Article  CAS  Google Scholar 

  26. Bustamante C, Chemla YR, Moffitt JR (2008) In: Selvin P, Ha TJ (eds) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, New York

    Google Scholar 

  27. Block SM (1998) In: Spector D, Goldman R, Leinward L (eds) Cells: a laboratory manual. Cold Spring Harbor Press, New York

    Google Scholar 

  28. Van mameren J, Wuite GJ, Heller I (2011) Introduction to optical tweezers: background, system designs, and commercial solutions. Methods Mol Biol 783:1–20

    Article  CAS  Google Scholar 

  29. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  30. Visscher K, Brakenhoff GJ, Krol JJ (1993) Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14:105–114

    Article  CAS  Google Scholar 

  31. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE JSTQE 2:1066–1076

    CAS  Google Scholar 

  32. Wuite GJ, Davenport RJ, Rappaport A et al (2000) An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophys J 79:1155–1167

    Article  CAS  Google Scholar 

  33. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    Article  CAS  Google Scholar 

  34. Pralle A, Prummer M, Florin E et al (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44:378–386

    Article  CAS  Google Scholar 

  35. Huisstede JHG, van Rooijen BD, van der Werf KO et al (2006) Dependence of silicon position-detector bandwidth on wavelength, power, and bias. Opt Lett 31:610–612

    Article  CAS  Google Scholar 

  36. Analog Devices (2007) User’s Manual for CMOS 300 MSPS Complete DDS: AD9852, Rev. E. p. 1–52

    Google Scholar 

  37. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86

    Article  CAS  Google Scholar 

  38. Landry MP, McCall PM, Qi Z et al (2008) Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys J 97:2128–2136

    Article  Google Scholar 

  39. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  CAS  Google Scholar 

  40. Joo C, Ha T (2008) In: Selvin PR, Ha T (eds) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, New York

    Google Scholar 

  41. Swoboda M, Cheng H, Brugger D et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6:6364–6369

    Article  CAS  Google Scholar 

  42. Brewer LR, Bianco PR (2008) Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat Methods 5:517–525

    Article  CAS  Google Scholar 

  43. Min TL, Mears PJ, Golding I et al (2012) Chemotactic adaptation kinetics of individual Escherichia coli cells. Proc Natl Acad Sci U S A 109:9869–9874

    Article  CAS  Google Scholar 

  44. Landry MP, Zou X, Wang L et al (2013) DNA target sequence identification mechanism for dimer-active protein complexes. Nucleic Acids Res 41:2416–2427

    Article  CAS  Google Scholar 

  45. Ha T, Rasnik I, Cheng W et al (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419:638–641

    Article  CAS  Google Scholar 

  46. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  Google Scholar 

  47. Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246

    Article  CAS  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28

    Google Scholar 

  49. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    Article  CAS  Google Scholar 

  50. Odijk T (1995) Stiff chains and filaments under tension. Macromolecules 28:7016–7018

    Article  CAS  Google Scholar 

  51. Bustamante C, Marko JF, Siggia E et al (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  CAS  Google Scholar 

  52. Wang MD, Yin H, Landick R et al (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346

    Article  CAS  Google Scholar 

  53. Woodside MT, Behnke-Parks WM, Larizadeh K et al (2006) Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A 103:6190–6195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Chemla, Ha, and Comstock laboratories for scientific discussion. Funding was provided by NSF grants MCB-0952442 (CAREER to Y.R.C.), PHY-1430124 (Center for the Physics of Living Cells to Y.R.C.), MCB-1514706 (to M.J.C.), and NIH grant R21 RR025341 (to Y.R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann R. Chemla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Whitley, K.D., Comstock, M.J., Chemla, Y.R. (2017). High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics