Skip to main content

Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 1486)

Abstract

Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.

Key words

  • Optical trap
  • Optical tweezers
  • Kinesin
  • Dynein
  • Intracellular transport
  • Microtubules
  • Cell mechanics
  • Live-cell assays
  • Biological materials

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6421-5_21
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6421-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    CrossRef  CAS  Google Scholar 

  2. Gardner MK, Charlebois BD, Janosi IM et al (2011) Rapid microtubule self-assembly kinetics. Cell 146:582–592

    CrossRef  CAS  Google Scholar 

  3. Kerssemakers JW, Munteanu EL, Laan L et al (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712

    CrossRef  CAS  Google Scholar 

  4. Cecconi C, Shank EA, Bustamante C et al (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    CrossRef  CAS  Google Scholar 

  5. Mizuno D, Tardin C, Schmidt CF et al (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373

    CrossRef  CAS  Google Scholar 

  6. Guo M, Ehrlicher AJ, Jensen MH et al (2014) Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158:822–832

    CrossRef  CAS  Google Scholar 

  7. Tolic-Norrelykke SF, Schaffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101

    CrossRef  Google Scholar 

  8. Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246

    CrossRef  CAS  Google Scholar 

  9. Leidel C, Longoria RA, Gutierrez FM et al (2012) Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 103:492–500

    CrossRef  CAS  Google Scholar 

  10. Rai AK, Rai A, Ramaiya AJ et al (2013) Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 152:172–182

    CrossRef  CAS  Google Scholar 

  11. Jun Y, Tripathy SK, Narayanareddy BR et al (2014) Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys J 107:1474–1484

    CrossRef  CAS  Google Scholar 

  12. Mas J, Richardson AC, Reihani SN et al (2013) Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells. Phys Biol 10:046006

    CrossRef  Google Scholar 

  13. Hendricks AG, Holzbaur ELF, Goldman YE (2012) Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc Natl Acad Sci 109:18447–18452

    CrossRef  CAS  Google Scholar 

  14. Blocker A, Severin FF, Burkhardt JK et al (1997) Molecular requirements for bi-directional movement of phagosomes along microtubules. J Cell Biol 137:113–129

    CrossRef  CAS  Google Scholar 

  15. Blehm BH, Schroer TA, Trybus KM et al (2013) In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc Natl Acad Sci U S A 110:3381–3386

    CrossRef  CAS  Google Scholar 

  16. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777

    CrossRef  CAS  Google Scholar 

  17. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    CrossRef  CAS  Google Scholar 

  18. Maday S, Twelvetrees AE, Moughamian AJ et al (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84:292–309

    CrossRef  CAS  Google Scholar 

  19. Lee WM, Reece PJ, Marchington RF et al (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2:3226–3238

    CrossRef  CAS  Google Scholar 

  20. Berg-Sorensen K, Oddershede L, Florin EL et al (2003) Unintended filtering in a typical photodiode detection system for optical tweezers. J Appl Phys 93:3167–3176

    CrossRef  CAS  Google Scholar 

  21. Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures. Wiley series in probability and statistics, 3rd edn. Wiley, New York, NY

    Google Scholar 

  22. Gittes F, Schnurr B, Olmsted PD et al (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79:3286–3289

    CrossRef  CAS  Google Scholar 

  23. Lau AWC, Hoffman BD, Davies A et al (2003) Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 91:198101

    CrossRef  CAS  Google Scholar 

  24. Loubéry S, Wilhelm C, Hurbain I et al (2008) Different microtubule motors move early and late endocytic compartments. Traffic 9:492–509

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Pritish Agarwal for developing custom software to control the optical trap, Mr. Pete Cainfrani for building the custom focus stabilization system, and Ms. Mariko Tokito for sharing her wealth of knowledge on cell culture and protein purification. This work was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to AGH) and the National Institutes of Health (P01-GM087253 to YEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam G. Hendricks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hendricks, A.G., Goldman, Y.E. (2017). Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols