Skip to main content

Observing Single RNA Polymerase Molecules Down to Base-Pair Resolution

  • Protocol
  • First Online:
Book cover Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

During transcriptional elongation, RNA polymerases (RNAP) employ a stepping mechanism to translocate along the DNA template while synthesizing RNA. Optical trapping assays permit the progress of single molecules of RNA polymerase to be monitored in real time, at resolutions down to the level of individual base pairs. Additionally, optical trapping assays permit the application of exquisitely controlled, external forces on RNAP. Responses to such forces can reveal details of the load-dependent kinetics of transcriptional elongation and pausing. Traditionally, the bacterial form of RNAP from E. coli has served as a model for the study of transcriptional elongation using optical traps. However, it is now feasible to perform optical trapping experiments using the eukaryotic polymerase, RNAPII, as well. In this report, we describe the methods to perform optical trapping transcriptional elongation assays with both prokaryotic RNAP and eukaryotic RNAPII. We provide detailed instructions on how to reconstitute transcription elongation complexes, derivatize beads used in the assays, and perform optical trapping measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Decker KB, Hinton DM (2013) Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases. Annu Rev Microbiol 67:113–139. doi:10.1146/annurev-micro-092412-155756

    Article  CAS  Google Scholar 

  2. Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C (2009) Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325(5940):626–628. doi:10.1126/science.1172926

    Article  CAS  Google Scholar 

  3. Horn AE, Goodrich JA, Kugel JF (2014) Single molecule studies of RNA polymerase II transcription in vitro. Transcription 5(1):e27608

    Article  Google Scholar 

  4. Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM (2012) Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A 109(17):6555–6560. doi:10.1073/pnas.1200939109

    Article  CAS  Google Scholar 

  5. Zhou J, Schweikhard V, Block SM (2013) Single-molecule studies of RNAPII elongation. Biochim Biophys Acta 1829(1):29–38. doi:10.1016/j.bbagrm.2012.08.006

    Article  CAS  Google Scholar 

  6. Galburt EA, Grill SW, Wiedmann A, Lubkowska L, Choy J, Nogales E, Kashlev M, Bustamante C (2007) Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446(7137):820–823. doi:10.1038/nature05701

    Article  CAS  Google Scholar 

  7. Galburt EA, Grill SW, Bustamante C (2009) Single molecule transcription elongation. Methods 48(4):323–332. doi:10.1016/j.ymeth.2009.04.021

    Article  CAS  Google Scholar 

  8. Herbert KM, Greenleaf WJ, Block SM (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–176. doi:10.1146/annurev.biochem.77.073106.100741

    Article  CAS  Google Scholar 

  9. Herbert KM, La Porta A, Wong BJ, Mooney RA, Neuman KC, Landick R, Block SM (2006) Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 125(6):1083–1094. doi:10.1016/j.cell.2006.04.032

    Article  CAS  Google Scholar 

  10. Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM (2003) Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115(4):437–447

    Article  CAS  Google Scholar 

  11. Shaevitz JW, Abbondanzieri EA, Landick R, Block SM (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426(6967):684–687. doi:10.1038/nature02191

    Article  CAS  Google Scholar 

  12. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465. doi:10.1038/nature04268

    Article  CAS  Google Scholar 

  13. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282(5390):902–907

    Article  CAS  Google Scholar 

  14. Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J (1995) Transcription against an applied force. Science 270(5242):1653–1657

    Article  CAS  Google Scholar 

  15. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809. doi:10.1063/1.1785844

    Article  CAS  Google Scholar 

  16. Perkins TT (2014) Angstrom-precision optical traps and applications. Annu Rev Biophys 43:279–302. doi:10.1146/annurev-biophys-042910-155223

    Article  CAS  Google Scholar 

  17. Schafer DA, Gelles J, Sheetz MP, Landick R (1991) Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352(6334):444–448. doi:10.1038/352444a0

    Article  CAS  Google Scholar 

  18. Greenleaf WJ, Woodside MT, Abbondanzieri EA, Block SM (2005) Passive all-optical force clamp for high-resolution laser trapping. Phys Rev Lett 95(20):208102

    Article  Google Scholar 

  19. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quantum Electron 2(4):1066–1076. doi:10.1109/2944.577338

    Article  CAS  Google Scholar 

  20. Fazal FM, Meng CA, Murakami K, Kornberg RD, Block SM (2015) Real-time observation of the initiation of RNA polymerase II transcription. Nature 525(7568):274–277. doi:10.1038/nature14882

    Article  CAS  Google Scholar 

  21. Palangat M, Larson MH, Hu X, Gnatt A, Block SM, Landick R (2012) Efficient reconstitution of transcription elongation complexes for single-molecule studies of eukaryotic RNA polymerase II. Transcription 3(3):146–153. doi:10.4161/trns.20269

    Article  Google Scholar 

  22. Komissarova N, Kireeva ML, Becker J, Sidorenkov I, Kashlev M (2003) Engineering of elongation complexes of bacterial and yeast RNA polymerases. Methods Enzymol 371:233–251. doi:10.1016/S0076-6879(03)71017-9

    Article  CAS  Google Scholar 

  23. Kettenberger H, Armache KJ, Cramer P (2004) Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16(6):955–965. doi:10.1016/j.molcel.2004.11.040

    Article  CAS  Google Scholar 

  24. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265(5178):1599–1600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Block .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Capturing and testing a dumbbell with optical tweezers (WMV 14,606 kB).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chakraborty, A., Meng, C.A., Block, S.M. (2017). Observing Single RNA Polymerase Molecules Down to Base-Pair Resolution. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics