Skip to main content

Probing DNA–DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

DNA metabolism and DNA compaction in vivo involve frequent interactions of remote DNA segments, mediated by proteins. In order to gain insight into such interactions, quadruple-trap optical tweezers have been developed. This technique provides an unprecedented degree of control through the ability to independently manipulate two DNA molecules in three dimensions. In this way, discrete regions of different DNA molecules can be brought into contact with one another, with a well-defined spatial configuration. At the same time, the tension and extension of the DNA molecules can be monitored. Furthermore, combining quadruple-trap optical tweezers with microfluidics makes fast buffer exchange possible, which is important for in situ generation of the dual DNA–protein constructs needed for these kinds of experiments. In this way, processes such as protein-mediated inter-DNA bridging can be studied with unprecedented control. This chapter provides a step-by-step description of how to perform a dual DNA manipulation experiment using combined quadruple-trap optical tweezers and microfluidics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Heller I, Hoekstra TP, King GA et al (2014) Optical tweezers analysis of DNA−protein complexes. Chem Rev 114:3087–3119

    Article  CAS  Google Scholar 

  2. Chu S (1991) Laser manipulation of atoms and particles. Science 253:861–866

    Article  CAS  Google Scholar 

  3. Smith SB, Cui Y, Bustamante C (1996) B-DNA : the elastic response of overstretching individual double-stranded and single-stranded. Science 271:795–799

    Article  CAS  Google Scholar 

  4. Candelli A, Wuite GJL, Peterman EJG (2011) Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Phys Chem Chem Phys 13:7263–7272

    Article  CAS  Google Scholar 

  5. Noom MC, van den Broek B, van Mameren J et al (2007) Visualizing single DNA-bound proteins using DNA as a scanning probe. Nat Methods 4:1031–1036

    Article  CAS  Google Scholar 

  6. Laurens N, Driessen RPC, Heller I et al (2012) Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nat Commun 3:1328

    Article  Google Scholar 

  7. Dame RT, Noom MC, Wuite GJL (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444:387–390

    Article  CAS  Google Scholar 

  8. Ishijima A, Kojima H, Funatsu T et al (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92:161–171

    Article  CAS  Google Scholar 

  9. Candelli A, Hoekstra TP, Farge G et al (2013) A toolbox for generating single-stranded DNA in optical tweezers experiments. Biopolymers 99:611–620

    Article  CAS  Google Scholar 

  10. Biebricher AS, Heller I, Roijmans RFH et al (2015) The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat Commun 6:7304

    Article  CAS  Google Scholar 

  11. Moffitt JR, Chemla YR, Smith SB et al (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  12. Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129–156

    Article  CAS  Google Scholar 

  13. Thalhammer G, Obmascher L, Ritsch-Marte M (2015) Direct measurement of axial optical forces. Opt Express 23:6112

    Article  CAS  Google Scholar 

  14. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329

    Article  CAS  Google Scholar 

  15. Gross P (2011) The DNA double helix challenged by force, PhD dissertation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin J. G. Peterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brouwer, I., King, G.A., Heller, I., Biebricher, A.S., Peterman, E.J.G., Wuite, G.J.L. (2017). Probing DNA–DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics