O’Fágáin C (1997) Protein stability and its measurement. In: O’Fágáin C (ed) Stabilising protein function. Springer, Berlin, pp 115–125
Google Scholar
Seife C (1997) Blunting nature’s Swiss army knife. Science 277:1602–1603
CAS
CrossRef
PubMed
Google Scholar
Chung CH, Goldberg AL (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A 78:4931–4935
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hershko A, Leshinsky E, Ganoth D, Heller H (1984) ATP-dependent degradation of ubiquitin-protein conjugates. Proc Natl Acad Sci U S A 81:1619–1623
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70
CAS
CrossRef
PubMed
Google Scholar
de Souza PM, Bittencourt ML, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, Fonseca YM, Filho EXF, Junior AP, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346
CrossRef
PubMed
PubMed Central
Google Scholar
Song J, Tan H, Boyd SE, Shen H, Mahmood K, Webb GI, Akutsu T, Whisstock JC, Pike RN (2011) Bioinformatic approaches for predicting substrates of proteases. J Bioinform Comput Biol 9:149–178
CAS
CrossRef
PubMed
Google Scholar
Doucet A, Overall CM (2008) Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol Aspects Med 29:339–358
CAS
CrossRef
PubMed
Google Scholar
Deu E, Verdoes M, Bogyo M (2012) New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 19:9–16
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Vanaman TC, Bradshaw RA (1999) Proteases in cellular regulation. J Biol Chem 274:20047
CAS
CrossRef
PubMed
Google Scholar
Sandhya C, Sumantha A, Pandey A (2004) Proteases. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asiatech, New Delhi, India, pp 312–325
Google Scholar
Ryan BJ, Henehan GT (2013) Overview of approaches to preventing and avoiding proteolysis during expression and purification of proteins. Curr Protoc Protein Sci 5:5–25
Google Scholar
Terpe T (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial strains. Appl Microbiol Biotechnol 72:211–222
CAS
CrossRef
PubMed
Google Scholar
Zeinoddini M, Khajeh K, Hosseinkhani S, Saeedinia AR, Robatjazi SM (2013) Stabilisation of recombinant aequorin by polyols: activity, thermostability and limited proteolysis. Appl Biochem Biotechnol 170:273–280
CAS
CrossRef
PubMed
Google Scholar
Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107
CAS
CrossRef
PubMed
Google Scholar
Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. In: Clifton NJ (ed) Methods in molecular biology, vol 824. Humana, Totowa, NJ, pp 329–358
Google Scholar
Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170
CAS
CrossRef
PubMed
Google Scholar
Beynon RJ, Oliver S (2004) Avoidance of proteolysis in extracts. In: Cutler P (ed) Protein purification protocols, vol 244, Methods in molecular biology. Humana, Totowa, NJ, pp 75–85
CrossRef
Google Scholar
Vera A, Arís A, Carrió M, González-Montalbán N, Villaverde A (2005) Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 119:163–171
CAS
CrossRef
PubMed
Google Scholar
Pickering AM, Davies KJ (2012) A simple fluorescence labeling method for studies of protein oxidation, protein modification, and proteolysis. Free Radic Biol Med 52:239–246
CAS
CrossRef
PubMed
Google Scholar
Healy N, Greig S, Enahoro H, Roberts H, Drake L, Shaw E, Ashall F (1992) Detection of peptidases in Trypanosoma cruzi epimastigotes using chromogenic and fluorogenic substrates. Parasitology 104:315–322
CAS
CrossRef
PubMed
Google Scholar
Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G (2013) Zymography methods for visualizing hydrolytic enzymes. Nat Methods 10:211–220
CAS
CrossRef
PubMed
Google Scholar
Serim S, Haedke U, Verhelst SH (2012) Activity-based probes for the study of proteases: recent advances and developments. ChemMedChem 7:1146–1159
CAS
CrossRef
PubMed
Google Scholar
http://www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer/learning-center/protease-inhibitors.html
Beynon RJ (1998) Prevention of unwanted proteolysis. In: Walker JM (ed) Methods in molecular biology: new protein techniques, vol 3. Humana, Totowa, NJ, pp 1–23
CrossRef
Google Scholar
Frank MB (1997) “Notes on Protease Inhibitors” from a Bionet Newsgroup described in Molecular Biology Protocols. http://omrf.ouhsc.edu/~frank/protease.html
Harper JW, Hemmi K, Powers JC (1985) Reaction of serine proteases with substituted isocoumarins: discovery of 3,4-Dichloroisocoumarin, a new general mechanism based serine protease inhibitor. Biochemistry 24:1831–1841
CAS
CrossRef
PubMed
Google Scholar
Hassel M, Klenk G, Frohme M (1996) Prevention of unwanted proteolysis during extraction of proteins from protease-rich tissue. Anal Biochem 242:274–275
CAS
CrossRef
PubMed
Google Scholar
North MJ, Benyon RJ (1994) Prevention of unwanted proteolysis. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. Oxford University Press, Oxford, pp 241–249
Google Scholar
Sreedharan SK, Verma C, Caves LSD, Brocklehurst SM, Gharbia SE, Shah HN, Brocklehurst KM (1996) Demonstration that 1-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64–b-trypsin complex. Biochem J 316:777–786
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Salvensen G, Nagase H (1989) Inhibition of proteolytic enzymes. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. Oxford University Press, Oxford, pp 83–104
Google Scholar
North MJ (1989) Prevention of unwanted proteolysis. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. IRL Press, Oxford, pp 105–124
Google Scholar
Barford D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 21:407
CAS
CrossRef
PubMed
Google Scholar
Castellanos-Serra L, Paz-Lago D (2002) Inhibition of unwanted proteolysis during sample preparation: evaluation of its efficiency in challenge experiments. Electrophoresis 23:1745–1753
CAS
CrossRef
PubMed
Google Scholar
Kulakowska-Bodzon A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for sample preparation in proteomic research. J Chromatogr B 849:1–31
CrossRef
Google Scholar
Hua S, Hu CY, Kim BJ, Totten SM, Oh MJ, Yun N, Nwosu CC, Yoo JS, Lebrilla CB, An HJ (2013) Glyco-analytical multispecific proteolysis (Glyco-AMP): a simple method for detailed and quantitative glycoproteomic characterization. J Proteome Res 12:4414–4423
CAS
CrossRef
PubMed
Google Scholar
Nwosu CC, Huang J, Aldredge DL, Strum JS, Hua S, Seipert RR, Lebrilla CB (2012) In-gel nonspecific proteolysis for elucidating glycoproteins: a method for targeted protein-specific glycosylation analysis in complex protein mixtures. Anal Chem 85:956–963
CrossRef
PubMed
PubMed Central
Google Scholar
Ghobadi S, Yousefi F, Khademi F, Padidar S, Mostafaie A (2012) An efficient method for purification of nonspecific lipid transfer protein-1 from rice seeds using kiwifruit actinidin proteolysis and ion exchange chromatography. J Sep Sci 35:2827–2833
CAS
CrossRef
PubMed
Google Scholar
Yu L, Xiao G, Zhang J, Remmele RL, Eu M, Liu D (2012) Identification and quantification of Fc fusion peptibody degradations by limited proteolysis method. Anal Biochem 428:137–142
CAS
CrossRef
PubMed
Google Scholar
Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325
CAS
CrossRef
PubMed
Google Scholar
Rawlings ND, Barrett AJ (1994) Families of serine peptidases. Methods Enzymol 244:19–61
CAS
CrossRef
PubMed
Google Scholar
Bühling F, Fengler A, Brandt W, Welte T, Ansorge S, Nägler DK (2000) Review: novel cysteine proteases of the papain family. Adv Exp Med Biol 477:241–254
CrossRef
PubMed
Google Scholar
Dame JB, Reddy GR, Yowell CA, Dunn BM, Kay J, Berry C (1994) Sequence, expression and modelled structure of an aspartic protease from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 64:177–190
CAS
CrossRef
PubMed
Google Scholar
Barinka C, Byun Y, Dusich CL, Banerjee SR, Chen Y, Castanares M, Kozikowski AP, Mease RC, Pomper MG, Lubkowski J (2008) Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J Med Chem 51:7737–7743
CAS
CrossRef
PubMed
Google Scholar
Li YY, Bao YL, Song ZB, Sun LG, Wu P, Zhang Y, Fan C, Huang YX, Wu Y, Yu CL, Sun Y, Zheng LH, Wang GN, Li YX (2012) The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One 7:e35030
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rawlings ND, Barrett AJ, Bateman A (2011) Asparagine peptide lyases; a seventh catalytic type of proteolytic enzymes. J Biol Chem 286:38321–38328
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteases. Mol Aspects Med 29:258–289
CAS
CrossRef
PubMed
Google Scholar
Pendyala PR, Ayong L, Eatrides J, Schreiber M, Pham C, Chakrabarti R, Fidock D, Allen CM, Chakrabarti D (2008) Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparum. Mol Biochem Parasitol 158:1–10
CAS
CrossRef
PubMed
Google Scholar
Kuwana T, Rosalki SB (1991) Measurement of alkaline phosphatase of intestinal origin in plasma by p-bromotetramisole inhibition. J Clin Pathol 44:236–237
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jain MK (1982) Handbook of enzyme inhibitors. Wiley, New York, p 222
Google Scholar
Jain MK (1982) Handbook of enzyme inhibitors. Wiley, New York, p 334
Google Scholar
Jain MK (1982) Handbook of enzyme inhibitors. Wiley, New York, pp 189–190
Google Scholar
http://www.emdbiosciences.com/html/cbc/Phosphatase_Inhibitor_Cocktail_Sets.htm
Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482
CAS
CrossRef
PubMed
Google Scholar
Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr B 849:1–31
CAS
CrossRef
Google Scholar