Skip to main content

Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway

  • Protocol
  • First Online:
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1481))

Abstract

Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  2. Hsieh JC et al (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726):431–436

    Article  CAS  PubMed  Google Scholar 

  3. Piccolo S et al (1999) The head inducer cerberus is a multifunctional antagonist of nodal. BMP and Wnt signals. Nature 397(6721):707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Semenov MV et al (2001) Head inducer dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11(12):951–961

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X et al (2012) Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149(7):1565–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kakugawa S et al (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519(7542):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mukai A et al (2010) Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J 29(13):2114–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hao HX et al (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485(7397):195–200

    Article  CAS  PubMed  Google Scholar 

  9. Koo BK et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488(7413):665–669

    Article  CAS  PubMed  Google Scholar 

  10. Moffat LL et al (2014) The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans. Development 141(3):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Lau WB, Snel B, Clevers HC (2012) The R-spondin protein family. Genome Biol 13(3):242

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carmon KS et al (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108(28):11452–11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Lau W et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297

    Article  PubMed  Google Scholar 

  14. Glinka A et al (2011) LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep 12(10):1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruffner H et al (2012) R-Spondin potentiates Wnt/beta-catenin signaling through orphan receptors LGR4 and LGR5. PLoS One 7(7):e40976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen PH et al (2013) The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 27(12):1345–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng WC et al (2013) Structure of stem cell growth factor R-spondin 1 in complex with the ectodomain of its receptor LGR5. Cell Rep 3(6):1885–1892

    Article  CAS  PubMed  Google Scholar 

  18. Peng WC et al (2013) Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling. PLoS One 8(12):e83110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang D et al (2013) Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev 27(12):1339–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie Y et al (2013) Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. EMBO Rep 14(12):1120–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zebisch M et al (2013) Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat Commun 4:2787

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu K et al (2013) Crystal structures of Lgr4 and its complex with R-spondin1. Structure 21(9):1683–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Assie G et al (2014) Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 46(6):607–612

    Article  CAS  PubMed  Google Scholar 

  24. Furukawa T et al (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang X et al (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110(31):12649–12654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ong CK et al (2012) Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 44(6):690–693

    Article  CAS  PubMed  Google Scholar 

  27. Ryland GL et al (2013) RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. J Pathol 229(3):469–476

    Article  CAS  PubMed  Google Scholar 

  28. Wang K et al (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 46(6):573–582

    Article  CAS  PubMed  Google Scholar 

  29. Wu J et al (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A 108(52):21188–21193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giannakis M et al (2014) RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet 46(12):1264–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiao Y et al (2014) Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol 232(4):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seshagiri S et al (2012) Recurrent R-spondin fusions in colon cancer. Nature 488(7413):660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gurney A et al (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 109(29):11717–11722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang X et al (2015) Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 58(3):522–533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Cong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jiang, X., Cong, F. (2016). Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway. In: Barrett, Q., Lum, L. (eds) Wnt Signaling. Methods in Molecular Biology, vol 1481. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6393-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6393-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6391-1

  • Online ISBN: 978-1-4939-6393-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics