Advertisement

Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway

  • Xiaomo Jiang
  • Feng CongEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1481)

Abstract

Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6.

Key words

Wnt Receptor FZD LRP6 Flow cytometry Cell surface protein biotinylation Immunofluorescence Pulse-chase 

References

  1. 1.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205CrossRefPubMedGoogle Scholar
  2. 2.
    Hsieh JC et al (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726):431–436CrossRefPubMedGoogle Scholar
  3. 3.
    Piccolo S et al (1999) The head inducer cerberus is a multifunctional antagonist of nodal. BMP and Wnt signals. Nature 397(6721):707–710CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Semenov MV et al (2001) Head inducer dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11(12):951–961CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang X et al (2012) Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149(7):1565–1577CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kakugawa S et al (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519(7542):187–192CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mukai A et al (2010) Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J 29(13):2114–2125CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hao HX et al (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485(7397):195–200CrossRefPubMedGoogle Scholar
  9. 9.
    Koo BK et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488(7413):665–669CrossRefPubMedGoogle Scholar
  10. 10.
    Moffat LL et al (2014) The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans. Development 141(3):617–628CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Lau WB, Snel B, Clevers HC (2012) The R-spondin protein family. Genome Biol 13(3):242CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Carmon KS et al (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108(28):11452–11457CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de Lau W et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297CrossRefPubMedGoogle Scholar
  14. 14.
    Glinka A et al (2011) LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep 12(10):1055–1061CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruffner H et al (2012) R-Spondin potentiates Wnt/beta-catenin signaling through orphan receptors LGR4 and LGR5. PLoS One 7(7):e40976CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen PH et al (2013) The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 27(12):1345–1350CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Peng WC et al (2013) Structure of stem cell growth factor R-spondin 1 in complex with the ectodomain of its receptor LGR5. Cell Rep 3(6):1885–1892CrossRefPubMedGoogle Scholar
  18. 18.
    Peng WC et al (2013) Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling. PLoS One 8(12):e83110CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang D et al (2013) Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev 27(12):1339–1344CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xie Y et al (2013) Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. EMBO Rep 14(12):1120–1126CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zebisch M et al (2013) Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat Commun 4:2787CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu K et al (2013) Crystal structures of Lgr4 and its complex with R-spondin1. Structure 21(9):1683–1689CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Assie G et al (2014) Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 46(6):607–612CrossRefPubMedGoogle Scholar
  24. 24.
    Furukawa T et al (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang X et al (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110(31):12649–12654CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ong CK et al (2012) Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 44(6):690–693CrossRefPubMedGoogle Scholar
  27. 27.
    Ryland GL et al (2013) RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. J Pathol 229(3):469–476CrossRefPubMedGoogle Scholar
  28. 28.
    Wang K et al (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 46(6):573–582CrossRefPubMedGoogle Scholar
  29. 29.
    Wu J et al (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A 108(52):21188–21193CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Giannakis M et al (2014) RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet 46(12):1264–1266CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jiao Y et al (2014) Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol 232(4):428–435CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Seshagiri S et al (2012) Recurrent R-spondin fusions in colon cancer. Nature 488(7413):660–664CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gurney A et al (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 109(29):11717–11722CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang X et al (2015) Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 58(3):522–533CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Immuno-oncologyNovartis Institutes for Biomedical ResearchCambridgeUSA
  2. 2.Developmental and Molecular PathwaysNovartis Institutes for Biomedical ResearchCambridgeUSA

Personalised recommendations