Advertisement

Wnt Signaling pp 161-181 | Cite as

Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells

  • Ian J. Huggins
  • David Brafman
  • Karl WillertEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1481)

Abstract

Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.

Key words

Wnt Human pluripotent stem cell (hPSC) Human embryonic stem cell (hESC) Induced pluripotent stem cell (iPSC) Embryonic development 

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMedGoogle Scholar
  2. 2.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  3. 3.
    Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9:725–729CrossRefPubMedGoogle Scholar
  4. 4.
    Sterneckert JL, Reinhardt P, Scholer HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15:625–639CrossRefPubMedGoogle Scholar
  5. 5.
    Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4:a007864CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu P, Wakamiya M, Shea MJ et al (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365CrossRefPubMedGoogle Scholar
  7. 7.
    Smith WC, Harland RM (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67:753–765CrossRefPubMedGoogle Scholar
  8. 8.
    Bakre MM, Hoi A, Mong JC et al (2007) Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J Biol Chem 282:31703–31712CrossRefPubMedGoogle Scholar
  9. 9.
    Davidson KC, Adams AM, Goodson JM et al (2012) Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc Natl Acad Sci U S A 109:4485–4490CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fernandez A, Huggins IJ, Perna L et al (2014) The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proc Natl Acad Sci U S A 111:1409–1414CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ross J, Busch J, Mintz E et al (2014) A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells. Cell Rep 9:1770–1780CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRefPubMedGoogle Scholar
  13. 13.
    Brafman DA, Phung C, Kumar N et al (2013) Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 20:369–381CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar N, Richter J, Cutts J et al (2015) Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. ELife, in pressGoogle Scholar
  15. 15.
    MacDonald BT, He X (2012) Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol 2012;4:a007880Google Scholar
  16. 16.
    Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452CrossRefPubMedGoogle Scholar
  18. 18.
    Willert KH (2008) Isolation and application of bioactive Wnt proteins. Methods Mol Biol 468:17–29CrossRefPubMedGoogle Scholar
  19. 19.
    Wei Q, Yokota C, Semenov MV et al (2007) R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J Biol Chem 282:15903–15911CrossRefPubMedGoogle Scholar
  20. 20.
    Huch M, Gehart H, van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194CrossRefPubMedGoogle Scholar
  22. 22.
    Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772CrossRefPubMedGoogle Scholar
  23. 23.
    Blauwkamp TA, Nigam S, Ardehali R et al (2012) Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun 3:1070CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jiang W, Zhang D, Bursac N et al (2013) WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 1:46–52CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    de Lau W, Barker N, Low TY et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–297CrossRefPubMedGoogle Scholar
  26. 26.
    Glinka A, Dolde C, Kirsch N et al (2011) LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep 12:1055–1061CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hao HX, Xie Y, Zhang Y et al (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485:195–200CrossRefPubMedGoogle Scholar
  28. 28.
    Koo BK, Spit M, Jordens I et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–669CrossRefPubMedGoogle Scholar
  29. 29.
    Ruffner H, Sprunger J, Charlat O et al (2012) R-Spondin potentiates Wnt/beta-catenin signaling through orphan receptors LGR4 and LGR5. PLoS One 7:e40976CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ring DB, Johnson KW, Henriksen EJ et al (2003) Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52:588–595CrossRefPubMedGoogle Scholar
  32. 32.
    Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63CrossRefPubMedGoogle Scholar
  33. 33.
    Uren A, Reichsman F, Anest V et al (2000) Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 275:4374–4382CrossRefPubMedGoogle Scholar
  34. 34.
    Fedi P, Bafico A, Nieto Soria A et al (1999) Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem 274:19465–19472CrossRefPubMedGoogle Scholar
  35. 35.
    Galli LM, Barnes T, Cheng T et al (2006) Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn 235:681–690CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xavier CP, Melikova M, Chuman Y et al (2014) Secreted frizzled-related protein potentiation versus inhibition of Wnt3a/beta-catenin signaling. Cell Signal 26:94–101CrossRefPubMedGoogle Scholar
  37. 37.
    Chen B, Dodge ME, Tang W et al (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5:100–107CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25:111–112CrossRefPubMedGoogle Scholar
  39. 39.
    Takada R, Satomi Y, Kurata T et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801CrossRefPubMedGoogle Scholar
  40. 40.
    Zhai L, Chaturvedi D, Cumberledge S (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 279:33220–33227CrossRefPubMedGoogle Scholar
  41. 41.
    Huang SM, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620CrossRefPubMedGoogle Scholar
  42. 42.
    Gonsalves FC, Klein K, Carson BB et al (2011) An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci U S A 108:5954–5963CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jho EH, Zhang T, Domon C et al (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lustig B, Jerchow B, Sachs M et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yan D, Wiesmann M, Rohan M et al (2001) Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proc Natl Acad Sci U S A 98:14973–14978CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Veeman MT, Slusarski DC, Kaykas A et al (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13:680–685CrossRefPubMedGoogle Scholar
  47. 47.
    Fuerer C, Nusse R (2010) Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS One 5:e9370CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kita-Matsuo H, Barcova M, Prigozhina N et al (2009) Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS One 4:e5046CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Los Angeles A, Loh YH, Tesar PJ et al (2012) Accessing naive human pluripotency. Curr Opin Genet Dev 22:272–282CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492CrossRefPubMedGoogle Scholar
  52. 52.
    Pera MF (2014) In search of naivety. Cell Stem Cell 15:543–545CrossRefPubMedGoogle Scholar
  53. 53.
    Amin N, Vincan E (2012) The Wnt signaling pathways and cell adhesion. Front Biosci (Landmark Ed) 17:784–804CrossRefGoogle Scholar
  54. 54.
    Grumolato L, Liu G, Mong P et al (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24:2517–2530CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    James RG, Conrad WH, Moon RT (2008) Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods Mol Biol 468:131–144CrossRefPubMedGoogle Scholar
  56. 56.
    Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806CrossRefPubMedGoogle Scholar
  57. 57.
    van Amerongen R (2012) Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol 2012;4:a007914Google Scholar
  58. 58.
    Ishitani T, Kishida S, Hyodo-Miura J et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23:131–139CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ishitani T, Ninomiya-Tsuji J, Nagai S et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399:798–802CrossRefPubMedGoogle Scholar
  60. 60.
    van Amerongen R, Fuerer C, Mizutani M et al (2012) Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development. Dev Biol 369:101–114CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Moya N, Cutts J, Gaasterland T et al (2014) Endogenous WNT signaling regulates hPSC-derived neural progenitor cell heterogeneity and specifies their regional identity. Stem Cell Reports 3:1015–1028CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaUSA
  2. 2.School of Biological and Health Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations