Skip to main content

Visualizing Wnt Palmitoylation in Single Cells

  • Protocol
  • First Online:
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1481))

Abstract

Wnt palmitoylation regulates its secretion and signaling activity in cells. Methods to monitor cellular Wnt palmitoylation are instrumental in investigating Wnt activity, secretion, and its interaction with cellular membrane compartments. This protocol describes a method we have recently developed to detect cellular Wnt palmitoylation. The method, combining click chemistry, bio-orthogonal fatty acid probes, and proximity ligation assay (PLA), provides high sensitivity and subcellular resolution for detection of Wnt palmitoylation. It is also compatible with multiple imaging platforms, and is applicable to detecting palmitoylated forms of other fatty acylated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannoush RN, Sun J (2010) The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6:498–506

    Article  CAS  PubMed  Google Scholar 

  2. Salaun C, Greaves J, Chamberlain LH (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191:1229–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao X, Hannoush RN (2014) Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol 10:61–68

    Article  CAS  PubMed  Google Scholar 

  4. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801

    Article  CAS  PubMed  Google Scholar 

  5. Gao X, Arenas-Ramirez N, Scales SJ, Hannoush RN (2011) Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett 585:2501–2506

    Article  CAS  PubMed  Google Scholar 

  6. Tang X, Wu Y, Belenkaya TY, Huang Q, Ray L, Qu J, Lin X (2012) Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev Biol 364:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhai L, Chaturvedi D, Cumberledge S (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 279:33220–33227

    Article  CAS  PubMed  Google Scholar 

  8. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  9. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che J, Carey TE, Vanasse G, Harris JL (2013) Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A 110:20224–20229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA, Hannoush RN, Virshup DM (2013) Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res 73:502–507

    Article  CAS  PubMed  Google Scholar 

  12. Doubravska L, Krausova M, Gradl D, Vojtechova M, Tumova L, Lukas J, Valenta T, Pospichalova V, Fafilek B, Plachy J, Sebesta O, Korinek V (2011) Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling. Cell Signal 23:837–848

    Article  CAS  PubMed  Google Scholar 

  13. Peseckis SM, Deichaite I, Resh MD (1993) Iodinated fatty acids as probes for myristate processing and function. Incorporation into pp60v-src. J Biol Chem 268:5107–5114

    CAS  PubMed  Google Scholar 

  14. Schlesinger MJ, Magee AI, Schmidt MF (1980) Fatty acid acylation of proteins in cultured cells. J Biol Chem 255:10021–10024

    CAS  PubMed  Google Scholar 

  15. Gao X, Hannoush RN (2014) Method for cellular imaging of palmitoylated proteins with clickable probes and proximity ligation applied to Hedgehog, tubulin and Ras. J Am Chem Soc 136:4544–4550

    Article  CAS  PubMed  Google Scholar 

  16. Gao X, Hannoush RN (2014) Single-cell in situ imaging of palmitoylation in fatty-acylated proteins. Nat Protoc 9:2607–2623

    Article  CAS  PubMed  Google Scholar 

  17. Hannoush RN (2011) Development of chemical probes for biochemical detection and cellular imaging of myristoylated and palmitoylated proteins. Curr Protoc Chem Biol 3:15–26

    PubMed  Google Scholar 

  18. Hannoush RN (2012) Profiling cellular myristoylation and palmitoylation using omega-alkynyl fatty acids. Methods Mol Biol 800:85–94

    Article  CAS  PubMed  Google Scholar 

  19. Hannoush RN, Arenas-Ramirez N (2009) Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem Biol 4:581–587

    Article  CAS  PubMed  Google Scholar 

  20. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  PubMed  Google Scholar 

  21. Gullberg M, Gustafsdottir SM, Schallmeiner E, Jarvius J, Bjarnegard M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A 101:8420–8424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  Google Scholar 

  23. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125:3192–3193

    Article  CAS  PubMed  Google Scholar 

  24. Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130:11576–11577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100:9116–9121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaro BW, Yang YY, Hang HC, Pratt MR (2011) Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 108:8146–8151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang YY, Ascano JM, Hang HC (2010) Bioorthogonal chemical reporters for monitoring protein acetylation. J Am Chem Soc 132:3640–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bothwell IR, Islam K, Chen Y, Zheng W, Blum G, Deng H, Luo M (2012) Se-adenosyl-l-selenomethionine cofactor analogue as a reporter of protein methylation. J Am Chem Soc 134:14905–14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willnow S, Martin M, Luscher B, Weinhold E (2012) A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem 13:1167–1173

    Article  CAS  PubMed  Google Scholar 

  30. Heal WP, Jovanovic B, Bessin S, Wright MH, Magee AI, Tate EW (2011) Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem Commun (Camb) 47:4081–4083

    Article  CAS  Google Scholar 

  31. Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2012) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8:57–64

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge use of microscopes at the Center for Advanced Light Microscopy (CALM) at Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami N. Hannoush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gao, X., Hannoush, R.N. (2016). Visualizing Wnt Palmitoylation in Single Cells. In: Barrett, Q., Lum, L. (eds) Wnt Signaling. Methods in Molecular Biology, vol 1481. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6393-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6393-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6391-1

  • Online ISBN: 978-1-4939-6393-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics